Muru Ding , Zhirong Jin , Yanjun Zhang , Jinghong Hu
{"title":"A new mixed type crack propagation criterion in shale reservoirs","authors":"Muru Ding , Zhirong Jin , Yanjun Zhang , Jinghong Hu","doi":"10.1016/j.petlm.2023.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Hydraulic fracturing is a mainstream technology for unconventional oil and gas reservoirs development all over the world. How to use this technology to achieve high-level oil and gas resource extraction and how to form complex fracture networks as hydrocarbon transportation channels in tight reservoirs, which depends to a large extent on the interaction between hydraulic and pre-existing cracks. For hydraulic fracturing of fractured reservoirs, the impact of natural fractures, perforation direction, stress disturbances, faults and other influencing factors will produce a mixed Ⅰ&Ⅱ mode hydraulic fracture. To forecast whether hydraulic fractures cross pre-existing fractures, according to elastic mechanics and fracture mechanics, a stress state of cracks under the combination of tensile (Ⅰ) and shear (Ⅱ) is presented. A simple mixed-mode Ⅰ&Ⅱ hydraulic fracture's crossing judgment criterion is established, and the propagation of hydraulic fractures after encountering natural fractures is analyzed. The results show that for a given approaching angle there exists a certain range of stress ratio when crossing occurs. Under high approaching angle and large stress ratio, it is likely that hydraulic cracks will go directly through pre-existing cracks. The reinitiated angle is always controlled within the range of approximately 30° among the main direction of penetration.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 1","pages":"Pages 85-92"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240565612300024X/pdfft?md5=44d54819ca757ef901def6c775c7b57f&pid=1-s2.0-S240565612300024X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240565612300024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydraulic fracturing is a mainstream technology for unconventional oil and gas reservoirs development all over the world. How to use this technology to achieve high-level oil and gas resource extraction and how to form complex fracture networks as hydrocarbon transportation channels in tight reservoirs, which depends to a large extent on the interaction between hydraulic and pre-existing cracks. For hydraulic fracturing of fractured reservoirs, the impact of natural fractures, perforation direction, stress disturbances, faults and other influencing factors will produce a mixed Ⅰ&Ⅱ mode hydraulic fracture. To forecast whether hydraulic fractures cross pre-existing fractures, according to elastic mechanics and fracture mechanics, a stress state of cracks under the combination of tensile (Ⅰ) and shear (Ⅱ) is presented. A simple mixed-mode Ⅰ&Ⅱ hydraulic fracture's crossing judgment criterion is established, and the propagation of hydraulic fractures after encountering natural fractures is analyzed. The results show that for a given approaching angle there exists a certain range of stress ratio when crossing occurs. Under high approaching angle and large stress ratio, it is likely that hydraulic cracks will go directly through pre-existing cracks. The reinitiated angle is always controlled within the range of approximately 30° among the main direction of penetration.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing