{"title":"Substrate recognition by 2-oxoacid:ferredoxin oxidoreductase from Sulfolobus sp. strain 7","authors":"Eriko Fukuda, Takayoshi Wakagi","doi":"10.1016/S0167-4838(02)00280-7","DOIUrl":null,"url":null,"abstract":"<div><p>2-Oxoacid:ferredoxin oxidoreductase (OFOR) catalyzes the coenzyme A-dependent oxidative decarboxylation of 2-oxoacids, at an analogous metabolic position to 2-oxoacid dehydrogenase multienzyme complex. The enzyme from <em>Sulfolobus</em> sp. strain 7, a thermoacidophilic crenarchaeon, is a heterodimer comprising two subunits, a (632 amino acids) and b (305 amino acids). In contrast to other OFORs, the <em>Sulfolobus</em> enzyme shows a broad specificity for 2-oxoacids such as pyruvate and 2-oxoglutarate. Based on careful multiple alignment of this enzyme family and on the reported three-dimensional structure of the homodimeric pyruvate:ferredoxin oxidoreductase (POR) from <em>Desulfovibrio africanus</em>, we selected five amino acids, T256, R344 and T353 of subunit-a, and K49 and L123 of subunit-b, as candidate 2-oxoacid recognizing residues. To identify the residues determining the 2-oxoacid specificity of the enzyme family, we performed point mutations of these five amino acids, and characterized the resulting mutants. Analyses of the mutants revealed that R344 of subunit-a of the enzyme was essential for the activity, and that K49R and L123N of subunit-b drastically affected the enzyme specificity for pyruvate and 2-oxoglutarate, respectively. Replacement of the five residues resulted in significant changes in both <em>K</em><sub>m</sub> and <em>V</em><sub>max</sub>, indicating that these amino acids are clearly involved in substrate recognition and catalysis.</p></div>","PeriodicalId":100166,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","volume":"1597 1","pages":"Pages 74-80"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00280-7","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167483802002807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
2-Oxoacid:ferredoxin oxidoreductase (OFOR) catalyzes the coenzyme A-dependent oxidative decarboxylation of 2-oxoacids, at an analogous metabolic position to 2-oxoacid dehydrogenase multienzyme complex. The enzyme from Sulfolobus sp. strain 7, a thermoacidophilic crenarchaeon, is a heterodimer comprising two subunits, a (632 amino acids) and b (305 amino acids). In contrast to other OFORs, the Sulfolobus enzyme shows a broad specificity for 2-oxoacids such as pyruvate and 2-oxoglutarate. Based on careful multiple alignment of this enzyme family and on the reported three-dimensional structure of the homodimeric pyruvate:ferredoxin oxidoreductase (POR) from Desulfovibrio africanus, we selected five amino acids, T256, R344 and T353 of subunit-a, and K49 and L123 of subunit-b, as candidate 2-oxoacid recognizing residues. To identify the residues determining the 2-oxoacid specificity of the enzyme family, we performed point mutations of these five amino acids, and characterized the resulting mutants. Analyses of the mutants revealed that R344 of subunit-a of the enzyme was essential for the activity, and that K49R and L123N of subunit-b drastically affected the enzyme specificity for pyruvate and 2-oxoglutarate, respectively. Replacement of the five residues resulted in significant changes in both Km and Vmax, indicating that these amino acids are clearly involved in substrate recognition and catalysis.