Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates

Z. Zhu, Zhenyu A. Liao, L. Orecchia
{"title":"Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates","authors":"Z. Zhu, Zhenyu A. Liao, L. Orecchia","doi":"10.1145/2746539.2746610","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a novel construction of the linear-sized spectral sparsifiers of Batson, Spielman and Srivastava [11]. While previous constructions required Ω(n4) running time [11, 45], our sparsification routine can be implemented in almost-quadratic running time O(n2+ε). The fundamental conceptual novelty of our work is the leveraging of a strong connection between sparsification and a regret minimization problem over density matrices. This connection was known to provide an interpretation of the randomized sparsifiers of Spielman and Srivastava [39] via the application of matrix multiplicative weight updates (MWU) [17, 43]. In this paper, we explain how matrix MWU naturally arises as an instance of the Follow-the-Regularized-Leader framework and generalize this approach to yield a larger class of updates. This new class allows us to accelerate the construction of linear-sized spectral sparsifiers, and give novel insights on the motivation behind Batson, Spielman and Srivastava [11].","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

Abstract

In this paper, we provide a novel construction of the linear-sized spectral sparsifiers of Batson, Spielman and Srivastava [11]. While previous constructions required Ω(n4) running time [11, 45], our sparsification routine can be implemented in almost-quadratic running time O(n2+ε). The fundamental conceptual novelty of our work is the leveraging of a strong connection between sparsification and a regret minimization problem over density matrices. This connection was known to provide an interpretation of the randomized sparsifiers of Spielman and Srivastava [39] via the application of matrix multiplicative weight updates (MWU) [17, 43]. In this paper, we explain how matrix MWU naturally arises as an instance of the Follow-the-Regularized-Leader framework and generalize this approach to yield a larger class of updates. This new class allows us to accelerate the construction of linear-sized spectral sparsifiers, and give novel insights on the motivation behind Batson, Spielman and Srivastava [11].
超越矩阵乘法更新的频谱稀疏化和遗憾最小化
在本文中,我们提供了Batson, Spielman和Srivastava[11]的线性大小谱稀疏器的新构造。虽然以前的构造需要Ω(n4)运行时间[11,45],但我们的稀疏化程序可以在几乎二次的运行时间O(n2+ε)内实现。我们工作的基本概念新颖之处在于利用密度矩阵上的稀疏化和遗憾最小化问题之间的紧密联系。已知这种联系通过应用矩阵乘法权重更新(MWU)为Spielman和Srivastava[39]的随机稀疏化提供了解释[17,43]。在本文中,我们解释了矩阵MWU是如何作为follow -the- regulalized - leader框架的一个实例自然出现的,并推广了这种方法来产生更大的更新类。这个新的类使我们能够加速线性大小的光谱稀疏器的构建,并对Batson, Spielman和Srivastava[11]背后的动机提供新颖的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信