Temporal Formation and Evolution of Online Communities

Hossein Fani
{"title":"Temporal Formation and Evolution of Online Communities","authors":"Hossein Fani","doi":"10.1145/2835776.2855089","DOIUrl":null,"url":null,"abstract":"Researchers have already studied the identification of online communities and the possible impact or influence relationships from several perspectives. For instance, communities of users that are formed based on shared relationships and topological similarities, or communities that consist of users that share similar content. However, little work has been done on detection of communities that simultaneously share topical and temporal similarities. Furthermore, these studies have not explored the causation relationship between the communities. Causation provides systematic explanation as to why communities are formed and helps to predict future communities. This proposal will address two main research questions: i) how can communities that share topical and temporal similarities be identified, and ii) how can causation relation between different online communities be detected and modelled. We model users' behaviour towards topics of interest through multivariate time series to identify like-minded communities. Further, we employ Granger's concept of causality to infer causation between detected communities from corresponding users' time series. Granger causality is the prominent approach in time series modelling and rests on a firm statistical foundation. We assess the proposed community detection methods through comparison with the state of the art and verify the causal model through its prediction accuracy.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2855089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Researchers have already studied the identification of online communities and the possible impact or influence relationships from several perspectives. For instance, communities of users that are formed based on shared relationships and topological similarities, or communities that consist of users that share similar content. However, little work has been done on detection of communities that simultaneously share topical and temporal similarities. Furthermore, these studies have not explored the causation relationship between the communities. Causation provides systematic explanation as to why communities are formed and helps to predict future communities. This proposal will address two main research questions: i) how can communities that share topical and temporal similarities be identified, and ii) how can causation relation between different online communities be detected and modelled. We model users' behaviour towards topics of interest through multivariate time series to identify like-minded communities. Further, we employ Granger's concept of causality to infer causation between detected communities from corresponding users' time series. Granger causality is the prominent approach in time series modelling and rests on a firm statistical foundation. We assess the proposed community detection methods through comparison with the state of the art and verify the causal model through its prediction accuracy.
网络社区的时间形成与演化
研究人员已经从几个角度研究了在线社区的识别以及可能产生的影响或影响关系。例如,基于共享关系和拓扑相似性形成的用户社区,或者由共享相似内容的用户组成的社区。然而,在检测同时具有主题和时间相似性的社区方面做的工作很少。此外,这些研究没有探讨群落之间的因果关系。因果关系为群落形成的原因提供了系统的解释,并有助于预测未来的群落。该提案将解决两个主要的研究问题:i)如何识别具有主题和时间相似性的社区,以及ii)如何检测和建模不同在线社区之间的因果关系。我们通过多变量时间序列来模拟用户对感兴趣主题的行为,以确定志同道合的社区。此外,我们采用格兰杰因果关系的概念,从相应的用户时间序列中推断出被检测社区之间的因果关系。格兰杰因果关系是时间序列建模中的重要方法,它建立在坚实的统计基础之上。我们通过与最新技术的比较来评估所提出的社区检测方法,并通过其预测准确性来验证因果模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信