Direct reconstruction of parametric images using any spatiotemporal 4D image based model and maximum likelihood expectation maximisation

J. Matthews, G. Angelis, F. Kotasidis, P. Markiewicz, A. Reader
{"title":"Direct reconstruction of parametric images using any spatiotemporal 4D image based model and maximum likelihood expectation maximisation","authors":"J. Matthews, G. Angelis, F. Kotasidis, P. Markiewicz, A. Reader","doi":"10.1109/NSSMIC.2010.5874225","DOIUrl":null,"url":null,"abstract":"Direct application of the expectation maximisation (EM) algorithm to the spatiotemporal maximum likelihood problem results in a convenient separation of the image based problem from the projection based problem. This enables any spatiotemporal 4D image model to be incorporated into MLEM image reconstruction with relative ease, only requiring tailored calculation of the fitting weights. As a preliminary example, assessment using direct estimation of spectral analysis coefficients is presented, exploiting an image based non-negative least squares algorithm, where a specially-weighted least squares update is equivalent to the required update towards the maximum likelihood estimate. The proposed approach demonstrates a reduced root mean square error (RMSE) in the estimates of volume of distribution. Future work will include the exploration of alternative spatiotemporal models.","PeriodicalId":13048,"journal":{"name":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","volume":"17 1","pages":"2435-2441"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2010.5874225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Direct application of the expectation maximisation (EM) algorithm to the spatiotemporal maximum likelihood problem results in a convenient separation of the image based problem from the projection based problem. This enables any spatiotemporal 4D image model to be incorporated into MLEM image reconstruction with relative ease, only requiring tailored calculation of the fitting weights. As a preliminary example, assessment using direct estimation of spectral analysis coefficients is presented, exploiting an image based non-negative least squares algorithm, where a specially-weighted least squares update is equivalent to the required update towards the maximum likelihood estimate. The proposed approach demonstrates a reduced root mean square error (RMSE) in the estimates of volume of distribution. Future work will include the exploration of alternative spatiotemporal models.
直接重建参数图像使用任何时空4D图像为基础的模型和最大似然期望最大化
将期望最大化(EM)算法直接应用于时空最大似然问题,可以方便地将基于图像的问题与基于投影的问题分离开来。这使得任何时空4D图像模型都可以相对容易地融入到MLEM图像重建中,只需要定制拟合权重的计算。作为一个初步的例子,提出了使用直接估计光谱分析系数的评估,利用基于图像的非负最小二乘算法,其中一个特殊加权的最小二乘更新相当于对最大似然估计的所需更新。所提出的方法证明了在估计分布体积时减少了均方根误差(RMSE)。未来的工作将包括探索其他时空模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信