Sequential dimension reduction and clustering of mixed-type data

Q4 Mathematics
Angelos Markos, O. Moschidis, Theodoros Chatzipantelis
{"title":"Sequential dimension reduction and clustering of mixed-type data","authors":"Angelos Markos, O. Moschidis, Theodoros Chatzipantelis","doi":"10.1504/IJDATS.2020.10028842","DOIUrl":null,"url":null,"abstract":"Clustering of a set of objects described by a mixture of continuous and categorical variables can be a challenging task. In the context of data reduction, an effective class of methods combine dimension reduction with clustering in the reduced space. In this paper, we review three approaches for sequential dimension reduction and clustering of mixed-type data. The first step of each approach involves the application of principal component analysis on a suitably transformed matrix. In the second step, a partitioning or hierarchical clustering algorithm is applied to the object scores in the reduced space. The common theoretical underpinnings of the three approaches are highlighted. The results of a benchmarking study show that sequential dimension reduction and clustering is an effective strategy, especially when categorical variables are more informative than continuous with regard to the underlying cluster structure. Strengths and limitations are also demonstrated on a real mixed-type dataset.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"1 1","pages":"228-246"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJDATS.2020.10028842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Clustering of a set of objects described by a mixture of continuous and categorical variables can be a challenging task. In the context of data reduction, an effective class of methods combine dimension reduction with clustering in the reduced space. In this paper, we review three approaches for sequential dimension reduction and clustering of mixed-type data. The first step of each approach involves the application of principal component analysis on a suitably transformed matrix. In the second step, a partitioning or hierarchical clustering algorithm is applied to the object scores in the reduced space. The common theoretical underpinnings of the three approaches are highlighted. The results of a benchmarking study show that sequential dimension reduction and clustering is an effective strategy, especially when categorical variables are more informative than continuous with regard to the underlying cluster structure. Strengths and limitations are also demonstrated on a real mixed-type dataset.
混合类型数据的顺序降维与聚类
对由连续变量和分类变量混合描述的一组对象进行聚类可能是一项具有挑战性的任务。在数据约简的背景下,一类有效的方法将降维与约简空间中的聚类相结合。本文综述了混合类型数据的顺序降维和聚类的三种方法。每一种方法的第一步都涉及到主成分分析在适当变换矩阵上的应用。第二步,对约简空间中的目标分数应用分区或分层聚类算法。强调了这三种方法的共同理论基础。基准研究的结果表明,顺序降维和聚类是一种有效的策略,特别是当分类变量的信息比关于底层聚类结构的连续变量更丰富时。在一个真实的混合类型数据集上也展示了其优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Data Analysis Techniques and Strategies
International Journal of Data Analysis Techniques and Strategies Decision Sciences-Information Systems and Management
CiteScore
1.20
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信