Sparse recovery using an SVD approach to interference removal and parameter estimation

C. Hayes, J. McClellan, W. Scott
{"title":"Sparse recovery using an SVD approach to interference removal and parameter estimation","authors":"C. Hayes, J. McClellan, W. Scott","doi":"10.1109/DSP-SPE.2015.7369553","DOIUrl":null,"url":null,"abstract":"This work focuses on parametric sparse sensing models and looks to improve ℓ1 regularization results when the model dictionary is strongly coherent and/or regularization parameters are unknown. The singular value decomposition (SVD) of the model's dictionary matrix is used to construct signal and noise subspaces. A method that uses the measurements to automatically optimize the subspace division along with a way to estimate the noise level is introduced. The signal-noise subspace decomposition is then extended to deal with an interfering signal that lies in a known linear subspace by modifying the SVD and performing the sparse recovery in the modified signal subspace. The proposed technique is applied successfully to the Discrete Spectrum of Relaxation Frequencies (DSRF) extraction problem for Electromagnetic Induction (EMI) underground sensing where a strong interference from the soil is a significant concern.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"13 1","pages":"202-207"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work focuses on parametric sparse sensing models and looks to improve ℓ1 regularization results when the model dictionary is strongly coherent and/or regularization parameters are unknown. The singular value decomposition (SVD) of the model's dictionary matrix is used to construct signal and noise subspaces. A method that uses the measurements to automatically optimize the subspace division along with a way to estimate the noise level is introduced. The signal-noise subspace decomposition is then extended to deal with an interfering signal that lies in a known linear subspace by modifying the SVD and performing the sparse recovery in the modified signal subspace. The proposed technique is applied successfully to the Discrete Spectrum of Relaxation Frequencies (DSRF) extraction problem for Electromagnetic Induction (EMI) underground sensing where a strong interference from the soil is a significant concern.
稀疏恢复采用SVD方法进行干扰去除和参数估计
这项工作的重点是参数稀疏感知模型,并希望在模型字典是强相干的和/或正则化参数未知的情况下改善l1正则化结果。利用模型字典矩阵的奇异值分解(SVD)构造信号和噪声子空间。介绍了一种利用测量值自动优化子空间划分的方法,以及一种估计噪声级的方法。然后,通过修改奇异值分解并在修改后的信号子空间中进行稀疏恢复,将信噪子空间分解扩展到处理已知线性子空间中的干扰信号。该方法已成功地应用于地下电磁感应(EMI)传感中的离散松弛频率谱(DSRF)提取问题,其中土壤的强干扰是一个重要的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信