Mohsen M. Barsim, M. Bassily, H. El-Batsh, Yaser A. Rihan, M. M. Sherif
{"title":"Numerical simulation of an experimental atrium fires in combined natural and forced ventilation by CFD","authors":"Mohsen M. Barsim, M. Bassily, H. El-Batsh, Yaser A. Rihan, M. M. Sherif","doi":"10.1080/14733315.2018.1524196","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the measurements data attained in Murcia Atrium fire tests (Gutiérrez-Montes, Sanmiguel-Rojas, Viedma, & Rein) using general CFD code, CFX-16.2 ( CFX-16.2, ANSYS, Inc.). Experiments were executed by burning heptane as a fuel for three different fires capacities, (1.32, 2.28 and 2.34 MW). Historically, CFX was validated with experimental data for compartment fires including natural ventilation only. In this paper validation was performed for developing fires during transient period in a large space, including the effect of combined natural and forced ventilation. Two different combustion models i.e. Non-combustion model and Eddy Dissipation Model (EDM) were used to represent the combustion of heptane. Four different approaches were employed to determine the predicted dynamic behavior of the smoke height and to evaluate the accuracy of CFX predictions. The results display CFX predictions have a reasonable concord with the experimental data. Therefore, CFX can be a valid tool for performance-based engineering to evaluate the smoke systems required for complex enclosed structures.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"12 1","pages":"1 - 24"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2018.1524196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 13
Abstract
Abstract This study investigates the measurements data attained in Murcia Atrium fire tests (Gutiérrez-Montes, Sanmiguel-Rojas, Viedma, & Rein) using general CFD code, CFX-16.2 ( CFX-16.2, ANSYS, Inc.). Experiments were executed by burning heptane as a fuel for three different fires capacities, (1.32, 2.28 and 2.34 MW). Historically, CFX was validated with experimental data for compartment fires including natural ventilation only. In this paper validation was performed for developing fires during transient period in a large space, including the effect of combined natural and forced ventilation. Two different combustion models i.e. Non-combustion model and Eddy Dissipation Model (EDM) were used to represent the combustion of heptane. Four different approaches were employed to determine the predicted dynamic behavior of the smoke height and to evaluate the accuracy of CFX predictions. The results display CFX predictions have a reasonable concord with the experimental data. Therefore, CFX can be a valid tool for performance-based engineering to evaluate the smoke systems required for complex enclosed structures.
期刊介绍:
This is a peer reviewed journal aimed at providing the latest information on research and application.
Topics include:
• New ideas concerned with the development or application of ventilation;
• Validated case studies demonstrating the performance of ventilation strategies;
• Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc;
• Developments in numerical methods;
• Measurement techniques;
• Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort);
• Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss);
• Driving forces (weather data, fan performance etc).