A new embedding result for Kondratiev spaces and application to adaptive approximation of elliptic PDEs

M. Hansen
{"title":"A new embedding result for Kondratiev spaces and application to adaptive approximation of elliptic PDEs","authors":"M. Hansen","doi":"10.3929/ETHZ-A-010386160","DOIUrl":null,"url":null,"abstract":"In a continuation of recent work on Besov regularity of solutions to elliptic PDEs in Lipschitz domains with polyhedral structure, we prove an embedding between weighted Sobolev spaces (Kondratiev spaces) relevant for the regularity theory for such elliptic problems, and TriebelLizorkin spaces, which are known to be closely related to approximation spaces for nonlinear n-term wavelet approximation. Additionally, we also provide necessary conditions for such embeddings. As a further application we discuss the relation of these embedding results with results by Gaspoz and Morin for approximation classes for adaptive Finite element approximation, and subsequently apply these result to parametric problems.","PeriodicalId":22276,"journal":{"name":"The annual research report","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The annual research report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-010386160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In a continuation of recent work on Besov regularity of solutions to elliptic PDEs in Lipschitz domains with polyhedral structure, we prove an embedding between weighted Sobolev spaces (Kondratiev spaces) relevant for the regularity theory for such elliptic problems, and TriebelLizorkin spaces, which are known to be closely related to approximation spaces for nonlinear n-term wavelet approximation. Additionally, we also provide necessary conditions for such embeddings. As a further application we discuss the relation of these embedding results with results by Gaspoz and Morin for approximation classes for adaptive Finite element approximation, and subsequently apply these result to parametric problems.
一种新的Kondratiev空间嵌入结果及其在椭圆偏微分方程自适应逼近中的应用
作为对椭圆型偏微分方程解的Besov正则性研究的延续,我们证明了与此类椭圆问题的正则性理论相关的加权Sobolev空间(Kondratiev空间)与triiebellizorkin空间之间的嵌入,而triiebellizorkin空间与非线性n项小波逼近的近似空间密切相关。此外,我们还为这种嵌入提供了必要的条件。作为进一步的应用,我们讨论了这些嵌入结果与自适应有限元近似类的Gaspoz和Morin的结果之间的关系,并随后将这些结果应用于参数问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信