Ramification theory of reciprocity sheaves, I: Zariski–Nagata purity

IF 1.2 1区 数学 Q1 MATHEMATICS
Kay Rülling, S. Saito
{"title":"Ramification theory of reciprocity sheaves, I: Zariski–Nagata purity","authors":"Kay Rülling, S. Saito","doi":"10.1515/crelle-2022-0094","DOIUrl":null,"url":null,"abstract":"Abstract We prove a Zariski–Nagata purity theorem for the motivic ramification filtration of a reciprocity sheaf. An important tool in the proof is a generalization of the Kato-Saito reciprocity map from geometric global class field theory to all reciprocity sheaves. As a corollary we obtain cut-by-curves and cut-by-surfaces criteria for various ramification filtrations. In some cases this reproves known theorems, in some cases we obtain new results.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"57 1","pages":"41 - 78"},"PeriodicalIF":1.2000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0094","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract We prove a Zariski–Nagata purity theorem for the motivic ramification filtration of a reciprocity sheaf. An important tool in the proof is a generalization of the Kato-Saito reciprocity map from geometric global class field theory to all reciprocity sheaves. As a corollary we obtain cut-by-curves and cut-by-surfaces criteria for various ramification filtrations. In some cases this reproves known theorems, in some cases we obtain new results.
互易束的分支理论,I: Zariski-Nagata纯度
摘要证明了互易轴的动力分支过滤的一个Zariski-Nagata纯洁性定理。证明中的一个重要工具是将几何全局类场理论中的加藤-斋藤互易映射推广到所有互易束。作为推论,我们得到了各种分支过滤的曲线切割和曲面切割准则。在某些情况下,这反驳了已知的定理,在某些情况下,我们得到了新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信