How Is Energy Consumed in Smartphone Deep Learning Apps? Executing Locally vs. Remotely

Haoxin Wang, Baekgyu Kim, Jiang Xie, Zhu Han
{"title":"How Is Energy Consumed in Smartphone Deep Learning Apps? Executing Locally vs. Remotely","authors":"Haoxin Wang, Baekgyu Kim, Jiang Xie, Zhu Han","doi":"10.1109/GLOBECOM38437.2019.9013647","DOIUrl":null,"url":null,"abstract":"Applying deep learning to object detection provides the capability to accurately detect and classify complex objects in the real world. However, currently, few mobile applications use deep learning because such technology is computation- and energy-intensive. This paper, to the best of our knowledge, presents the first detailed experimental study of the smartphone's energy consumption and the detection latency of executing deep Convolutional Neural Networks (CNN) optimized object detec- tion, either locally on the smartphone or remotely on an edge server. We experiment with a variety of smartphones, obtaining different levels of computation capacities, in order to ensure that we are not profiling a specific device. Our detailed measurements refine the energy analysis of smartphones and reveal some interesting perspectives regarding the energy consumption of executing the deep CNN optimized object detection. We believe that these findings will guide the design of energy efficient processing pipeline of the CNN optimized object detection.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"34 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9013647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Applying deep learning to object detection provides the capability to accurately detect and classify complex objects in the real world. However, currently, few mobile applications use deep learning because such technology is computation- and energy-intensive. This paper, to the best of our knowledge, presents the first detailed experimental study of the smartphone's energy consumption and the detection latency of executing deep Convolutional Neural Networks (CNN) optimized object detec- tion, either locally on the smartphone or remotely on an edge server. We experiment with a variety of smartphones, obtaining different levels of computation capacities, in order to ensure that we are not profiling a specific device. Our detailed measurements refine the energy analysis of smartphones and reveal some interesting perspectives regarding the energy consumption of executing the deep CNN optimized object detection. We believe that these findings will guide the design of energy efficient processing pipeline of the CNN optimized object detection.
智能手机深度学习应用是如何消耗能量的?本地执行与远程执行
将深度学习应用于对象检测提供了准确检测和分类现实世界中复杂对象的能力。然而,目前很少有移动应用程序使用深度学习,因为这种技术是计算和能源密集型的。据我们所知,本文首次对智能手机的能耗和执行深度卷积神经网络(CNN)优化的目标检测的检测延迟进行了详细的实验研究,无论是在本地智能手机上还是在远程边缘服务器上。我们对各种智能手机进行实验,获得不同级别的计算能力,以确保我们不是在分析特定的设备。我们的详细测量改进了智能手机的能量分析,并揭示了一些关于执行深度CNN优化目标检测的能量消耗的有趣观点。我们相信这些发现将指导CNN优化目标检测的高能效处理管道的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信