A survey of cross-validation procedures for model selection

IF 11 Q1 STATISTICS & PROBABILITY
Sylvain Arlot, Alain Celisse
{"title":"A survey of cross-validation procedures for model selection","authors":"Sylvain Arlot, Alain Celisse","doi":"10.1214/09-SS054","DOIUrl":null,"url":null,"abstract":"Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its apparent universality. Many results exist on the model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"56 1","pages":"40-79"},"PeriodicalIF":11.0000,"publicationDate":"2009-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3333","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/09-SS054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3333

Abstract

Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its apparent universality. Many results exist on the model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand.
模型选择交叉验证程序的调查
用于估计估计器的风险或执行模型选择,交叉验证是一种广泛的策略,因为它的简单性和明显的通用性。关于交叉验证方法的模型选择性能有很多研究结果。本调查旨在将这些结果与模型选择理论的最新进展联系起来,特别强调从严格的理论结果中区分经验陈述。作为结论,提供了根据手头问题的特定特征选择最佳交叉验证程序的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信