On the degree of ultrametricity

R. Rammal, J. A. d'Auriac, B. Douçot
{"title":"On the degree of ultrametricity","authors":"R. Rammal, J. A. d'Auriac, B. Douçot","doi":"10.1051/JPHYSLET:019850046020094500","DOIUrl":null,"url":null,"abstract":"Using the notion of the subdominant ultrametric, the degree of ultrametricity of a given metric space (e.g. phase space) is introduced. A simple and efficient method for the calculation of is outlined. is shown to provide a simple quantitative measure of the deviation from exact ultrametricity. Explicit examples are used to illustrate this notion which is argued to be of some interest in statistical-mechanical models and combinatorial optimization problems La notion de degre d'ultrametricite d'un espace metrique donne est introduite a partir de l'ultrametrique sous-dominante. On decrit une procedure simple et efficace pour le calcul de . On montre que fournit une mesure quantitative simple de la deviation par rapport a l'ultrametricite exacte. Cette notion est illustree pour des exemples explicites et nous suggerons son interet dans les modeles de mecanique statistique ainsi que les problemes d'optimisation combinatoire","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"36 1","pages":"945-952"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046020094500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Using the notion of the subdominant ultrametric, the degree of ultrametricity of a given metric space (e.g. phase space) is introduced. A simple and efficient method for the calculation of is outlined. is shown to provide a simple quantitative measure of the deviation from exact ultrametricity. Explicit examples are used to illustrate this notion which is argued to be of some interest in statistical-mechanical models and combinatorial optimization problems La notion de degre d'ultrametricite d'un espace metrique donne est introduite a partir de l'ultrametrique sous-dominante. On decrit une procedure simple et efficace pour le calcul de . On montre que fournit une mesure quantitative simple de la deviation par rapport a l'ultrametricite exacte. Cette notion est illustree pour des exemples explicites et nous suggerons son interet dans les modeles de mecanique statistique ainsi que les problemes d'optimisation combinatoire
关于超度度
利用次优超度量的概念,引入了给定度量空间(如相空间)的超度量度。给出了一种简单有效的计算方法。为精确超度偏差提供了一种简单的定量测量方法。本文用明确的例子来说明这一概念,认为它在统计力学模型和组合优化问题中具有一定的意义。“超尺度尺度”的概念引入了一个“超尺度尺度”的主体。对一个程序进行了简单、高效的计算。在montre ququite上,一种测量定量简单的de la偏差与l' ultramtricite的精确关系。本文通过实例说明了网络模型、机制模型、统计模型、问题模型和优化组合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信