Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
Antonio Giuseppe Grimaldi, Erica Ipocoana
{"title":"Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems","authors":"Antonio Giuseppe Grimaldi, Erica Ipocoana","doi":"10.1051/cocv/2022050","DOIUrl":null,"url":null,"abstract":"We study the higher fractional differentiability properties of the gradient of the solutions to variational obstacle problems of the form \\begin {gather*} \\min \\biggl\\{ \\int_{\\Omega} F(x,w,Dw) d x \\ : \\ w \\in \\mathcal{K}_{\\psi}(\\Omega) \\biggr\\}, \\end {gather*} with $F$ double phase functional of the form \\begin {equation*} F(x,w,z)=b(x,w)(|z|^p+a(x)|z|^q), \\end {equation*} where $\\Omega$ is a bounded open subset of $\\mathbb{R}^n$ , $\\psi \\in W^{1,p}(\\Omega)$ is a fixed function called \\textit { obstacle } and $\\mathcal{K}_{\\psi}(\\Omega)= \\{ w \\in W^{1,p}(\\Omega) : w \\geq \\psi \\ \\text{a.e. in} \\ \\Omega \\}$ is the class of admissible functions . Assuming that the gradient of the obstacle belongs to a suitable Besov space, we are able to prove that the gradient of the solution preserves some fractional differentiability property .","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2022050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

We study the higher fractional differentiability properties of the gradient of the solutions to variational obstacle problems of the form \begin {gather*} \min \biggl\{ \int_{\Omega} F(x,w,Dw) d x \ : \ w \in \mathcal{K}_{\psi}(\Omega) \biggr\}, \end {gather*} with $F$ double phase functional of the form \begin {equation*} F(x,w,z)=b(x,w)(|z|^p+a(x)|z|^q), \end {equation*} where $\Omega$ is a bounded open subset of $\mathbb{R}^n$ , $\psi \in W^{1,p}(\Omega)$ is a fixed function called \textit { obstacle } and $\mathcal{K}_{\psi}(\Omega)= \{ w \in W^{1,p}(\Omega) : w \geq \psi \ \text{a.e. in} \ \Omega \}$ is the class of admissible functions . Assuming that the gradient of the obstacle belongs to a suitable Besov space, we are able to prove that the gradient of the solution preserves some fractional differentiability property .
由于Besov空间具有较高的可微性,使得Besov空间可扩展为一类双相障碍问题
我们研究了形式为\begin {gather*} \min \biggl\{\int_{\Omega} F(x,w,Dw) d x \的变分障碍问题解梯度的高分数可微性:\ w \in \mathcal{K}_{\psi}(\Omega) \biggr\}, \end {gather*}与$F$双相泛函的形式为\begin {equation*} F(x,w,z)=b(x,w)(|z|^p+a(x)|z|^q), \end {equation*}其中$\Omega$是$\mathbb{R}^n$的有界开放子集,$\psi \in w ^{1,p}(\Omega)$是一个固定函数,称为\ texttit {obstacle}和$\mathcal{K}_{\psi}(\Omega)= \{w \in w ^{1,p}(\Omega): w \geq \psi \ \text{a.e。in} \ \ \ \}$是可容许函数的类。假设障碍物的梯度属于一个合适的Besov空间,我们能够证明解的梯度保持一定的分数可微性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信