{"title":"Uniform Exponential Stability of Discrete Semigroup and Space of Asymptotically Almost Periodic Sequences","authors":"Nisar Ahmad, Habiba Khalid, A. Zada","doi":"10.4171/ZAA/1550","DOIUrl":null,"url":null,"abstract":"We prove that the discrete semigroup T = {T (n) : n ∈ Z+} is uniformly exponentially stable if and only if for each z(n) ∈ AAP0(Z+,X ) the solution of the Cauchy problem { yn+1 = T (1)yn + z(n + 1), y(0) = 0 belongs to AAP0(Z+,X ). Where T (1) is the algebraic generator of T, Z+ is the set of all non-negative integers and X is a complex Banach space. Our proof uses the approach of discrete evolution semigroups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We prove that the discrete semigroup T = {T (n) : n ∈ Z+} is uniformly exponentially stable if and only if for each z(n) ∈ AAP0(Z+,X ) the solution of the Cauchy problem { yn+1 = T (1)yn + z(n + 1), y(0) = 0 belongs to AAP0(Z+,X ). Where T (1) is the algebraic generator of T, Z+ is the set of all non-negative integers and X is a complex Banach space. Our proof uses the approach of discrete evolution semigroups.