Design of a Novel Method for the Spatial Distribution of Cells within a Porous Scaffold for Tissue Engineering Applications

R. Subramanian, R. Bhowmick, H. Gappa-Fahlenkamp
{"title":"Design of a Novel Method for the Spatial Distribution of Cells within a Porous Scaffold for Tissue Engineering Applications","authors":"R. Subramanian, R. Bhowmick, H. Gappa-Fahlenkamp","doi":"10.4172/2157-7552.1000201","DOIUrl":null,"url":null,"abstract":"Tissue engineering is rapidly progressing to provide complex, three-dimensional (3D) representations of human tissues that can be used for tissue replacement and/or to study tissue systems. Tissue engineering includes the addition of cells within 3D scaffolds, along with bioactive components, sometimes within a bioreactor. A major challenge in developing many tissue-engineered models is the ability to evenly distribute cells throughout a porous scaffold, in order to achieve good cell viability and growth. In this study, we created a 3D collagen-chitosan scaffold with specific properties to aid in seeding cells within the entire volume and investigated a dynamic method to seed cells within such scaffold. Based on the requirements for cell seeding, the scaffolds were less than 500 µm thick, had pore sizes greater than 50 µm and had a porosity of 50% or greater. Fibroblasts were used as model cells for this seeding method. To seed fibroblasts within the scaffold, we varied two design parameters: concentration of the collagen seeding solution and the centrifugal force used for cell seeding. We ranked the seeding efficiency, cell proliferation and distribution in order to choose the ideal cell seeding method. Results showed that seeding with a higher concentration (2 mg/ml) of collagen seeding solution and a lower centrifugation speed (259 ×g) was the optimal seeding method, resulting in 84% increase in cell proliferation and a more uniform cell distribution throughout the scaffold. Results from this study can be applied for seeding a variety of cell populations within porous scaffolds for tissue engineering applications.","PeriodicalId":17539,"journal":{"name":"Journal of Tissue Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7552.1000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Tissue engineering is rapidly progressing to provide complex, three-dimensional (3D) representations of human tissues that can be used for tissue replacement and/or to study tissue systems. Tissue engineering includes the addition of cells within 3D scaffolds, along with bioactive components, sometimes within a bioreactor. A major challenge in developing many tissue-engineered models is the ability to evenly distribute cells throughout a porous scaffold, in order to achieve good cell viability and growth. In this study, we created a 3D collagen-chitosan scaffold with specific properties to aid in seeding cells within the entire volume and investigated a dynamic method to seed cells within such scaffold. Based on the requirements for cell seeding, the scaffolds were less than 500 µm thick, had pore sizes greater than 50 µm and had a porosity of 50% or greater. Fibroblasts were used as model cells for this seeding method. To seed fibroblasts within the scaffold, we varied two design parameters: concentration of the collagen seeding solution and the centrifugal force used for cell seeding. We ranked the seeding efficiency, cell proliferation and distribution in order to choose the ideal cell seeding method. Results showed that seeding with a higher concentration (2 mg/ml) of collagen seeding solution and a lower centrifugation speed (259 ×g) was the optimal seeding method, resulting in 84% increase in cell proliferation and a more uniform cell distribution throughout the scaffold. Results from this study can be applied for seeding a variety of cell populations within porous scaffolds for tissue engineering applications.
组织工程应用多孔支架中细胞空间分布的新方法设计
组织工程正在迅速发展,以提供复杂的人体组织的三维(3D)表示,可用于组织替代和/或研究组织系统。组织工程包括在3D支架中添加细胞,有时在生物反应器中添加生物活性成分。开发许多组织工程模型的主要挑战是在多孔支架中均匀分布细胞的能力,以实现良好的细胞活力和生长。在这项研究中,我们创建了一个具有特定性能的3D胶原-壳聚糖支架,以帮助在整个体积内播种细胞,并研究了在这种支架内播种细胞的动态方法。根据细胞播种的要求,支架厚度小于500µm,孔径大于50µm,孔隙率大于50%。该方法以成纤维细胞为模型细胞。为了在支架内播种成纤维细胞,我们改变了两个设计参数:胶原蛋白播种液的浓度和用于细胞播种的离心力。通过对播种效率、细胞增殖和分布进行排序,选择理想的细胞播种方法。结果表明,以较高浓度(2 mg/ml)的胶原种子液和较低的离心速度(259 ×g)播种是最佳的播种方法,细胞增殖率提高84%,细胞在支架内分布更均匀。本研究的结果可用于在多孔支架内播种各种细胞群,用于组织工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信