Lattice gauge theory for the Haldane conjecture and central-branch Wilson fermion

T. Misumi, Y. Tanizaki
{"title":"Lattice gauge theory for the Haldane conjecture and central-branch Wilson fermion","authors":"T. Misumi, Y. Tanizaki","doi":"10.1093/PTEP/PTAA003","DOIUrl":null,"url":null,"abstract":"We develop the $(1+1)$d lattice $U(1)$ gauge theory in order to define $2$-flavor massless Schwinger model, and discuss its connection with Haldane conjecture. We propose to use the central-branch Wilson fermion, which is defined by relating the mass, $m$, and the Wilson parameter, $r$, as $m+2r=0$. This setup gives two massless Dirac fermions in the continuum limit, and it turns out that no fine-tuning of $m$ is required because the extra $U(1)$ symmetry at the central branch, $U(1)_{\\bar{V}}$, prohibits the additive mass renormalization. Moreover, we show that Dirac determinant is positive semi-definite and this formulation is free from the sign problem, so the Monte Carlo simulation of the path integral is possible. By identifying the symmetry at low energy, we show that this lattice model has the mixed 't Hooft anomaly between $U(1)_{\\bar{V}}$, lattice translation, and lattice rotation. We discuss its relation to the anomaly of half-integer anti-ferromagnetic spin chains, so our lattice gauge theory is suitable for numerical simulation of Haldane conjecture. Furthermore, it gives new and strict understanding on parity-broken phase (Aoki phase) of $2$d Wilson fermion.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/PTEP/PTAA003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We develop the $(1+1)$d lattice $U(1)$ gauge theory in order to define $2$-flavor massless Schwinger model, and discuss its connection with Haldane conjecture. We propose to use the central-branch Wilson fermion, which is defined by relating the mass, $m$, and the Wilson parameter, $r$, as $m+2r=0$. This setup gives two massless Dirac fermions in the continuum limit, and it turns out that no fine-tuning of $m$ is required because the extra $U(1)$ symmetry at the central branch, $U(1)_{\bar{V}}$, prohibits the additive mass renormalization. Moreover, we show that Dirac determinant is positive semi-definite and this formulation is free from the sign problem, so the Monte Carlo simulation of the path integral is possible. By identifying the symmetry at low energy, we show that this lattice model has the mixed 't Hooft anomaly between $U(1)_{\bar{V}}$, lattice translation, and lattice rotation. We discuss its relation to the anomaly of half-integer anti-ferromagnetic spin chains, so our lattice gauge theory is suitable for numerical simulation of Haldane conjecture. Furthermore, it gives new and strict understanding on parity-broken phase (Aoki phase) of $2$d Wilson fermion.
Haldane猜想和中心分支Wilson费米子的点阵规范理论
为了定义$2$味无质量Schwinger模型,我们发展了$(1+1)$d格$U(1)$规范理论,并讨论了它与Haldane猜想的联系。我们建议使用中心分支威尔逊费米子,它是通过将质量$m$和威尔逊参数$r$联系起来定义的,为$m+2r=0$。这种设置给出了连续统极限下的两个无质量狄拉克费米子,结果证明不需要对m$进行微调,因为在中心分支上额外的$U(1)$对称性,$U(1)_{\bar{V}}$,阻止了附加的质量重整化。此外,我们还证明了狄拉克行列式是正半定的,并且该公式不存在符号问题,因此可以对路径积分进行蒙特卡罗模拟。通过识别低能量下的对称性,我们证明了该晶格模型在$U(1)_{\bar{V}}$、晶格平移和晶格旋转之间具有混合的't Hooft异常。我们讨论了它与半整数反铁磁自旋链异常的关系,因此我们的晶格规范理论适用于霍尔丹猜想的数值模拟。此外,对$2$d Wilson费米子的奇偶破缺相(Aoki相)给出了新的严格的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信