Nonbacktracking spectral clustering of nonuniform hypergraphs

IF 1.9 Q1 MATHEMATICS, APPLIED
Philip S. Chodrow, Nicole Eikmeier, Jamie Haddock
{"title":"Nonbacktracking spectral clustering of nonuniform hypergraphs","authors":"Philip S. Chodrow, Nicole Eikmeier, Jamie Haddock","doi":"10.48550/arXiv.2204.13586","DOIUrl":null,"url":null,"abstract":"Spectral methods offer a tractable, global framework for clustering in graphs via eigenvector computations on graph matrices. Hypergraph data, in which entities interact on edges of arbitrary size, poses challenges for matrix representations and therefore for spectral clustering. We study spectral clustering for nonuniform hypergraphs based on the hypergraph nonbacktracking operator. After reviewing the definition of this operator and its basic properties, we prove a theorem of Ihara-Bass type which allows eigenpair computations to take place on a smaller matrix, often enabling faster computation. We then propose an alternating algorithm for inference in a hypergraph stochastic blockmodel via linearized belief-propagation which involves a spectral clustering step again using nonbacktracking operators. We provide proofs related to this algorithm that both formalize and extend several previous results. We pose several conjectures about the limits of spectral methods and detectability in hypergraph stochastic blockmodels in general, supporting these with in-expectation analysis of the eigeinpairs of our studied operators. We perform experiments in real and synthetic data that demonstrate the benefits of hypergraph methods over graph-based ones when interactions of different sizes carry different information about cluster structure.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"11 1","pages":"251-279"},"PeriodicalIF":1.9000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.13586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

Abstract

Spectral methods offer a tractable, global framework for clustering in graphs via eigenvector computations on graph matrices. Hypergraph data, in which entities interact on edges of arbitrary size, poses challenges for matrix representations and therefore for spectral clustering. We study spectral clustering for nonuniform hypergraphs based on the hypergraph nonbacktracking operator. After reviewing the definition of this operator and its basic properties, we prove a theorem of Ihara-Bass type which allows eigenpair computations to take place on a smaller matrix, often enabling faster computation. We then propose an alternating algorithm for inference in a hypergraph stochastic blockmodel via linearized belief-propagation which involves a spectral clustering step again using nonbacktracking operators. We provide proofs related to this algorithm that both formalize and extend several previous results. We pose several conjectures about the limits of spectral methods and detectability in hypergraph stochastic blockmodels in general, supporting these with in-expectation analysis of the eigeinpairs of our studied operators. We perform experiments in real and synthetic data that demonstrate the benefits of hypergraph methods over graph-based ones when interactions of different sizes carry different information about cluster structure.
非均匀超图的非回溯谱聚类
谱方法通过对图矩阵的特征向量计算,为图的聚类提供了一个易于处理的全局框架。超图数据中实体在任意大小的边缘上相互作用,这对矩阵表示提出了挑战,因此对谱聚类提出了挑战。基于超图非回溯算子,研究了非均匀超图的谱聚类问题。在回顾了该算子的定义及其基本性质之后,我们证明了Ihara-Bass型定理,该定理允许在较小的矩阵上进行特征对计算,通常可以实现更快的计算。然后,我们提出了一种交替算法,通过线性化的信念传播在超图随机块模型中进行推理,该算法再次使用非回溯算子进行谱聚类步骤。我们提供了与该算法相关的证明,这些证明形式化并扩展了先前的几个结果。我们对超图随机块模型中的谱方法和可检测性的极限提出了几个猜想,并通过对我们研究的算子的特征对的期望内分析来支持这些猜想。我们在真实数据和合成数据中进行了实验,证明了当不同大小的交互携带有关簇结构的不同信息时,超图方法优于基于图的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信