{"title":"From Heun Class Equations to Painlevé Equations","authors":"J. Derezi'nski, A. Ishkhanyan, Adam Latosi'nski","doi":"10.3842/SIGMA.2021.056","DOIUrl":null,"url":null,"abstract":"In the first part of our paper we discuss linear 2nd order differential equations in the complex domain, especially Heun class equations, that is, the Heun equation and its confluent cases. The second part of our paper is devoted to Painleve I-VI equations. \nOur philosophy is to treat these families of equations in a unified way. This philosophy works especially well for Heun class equations. We discuss its classification into 5 supertypes, subdivided into 10 types (not counting trivial cases). We also introduce in a unified way deformed Heun class equations, which contain an additional nonlogarithmic singularity. We show that there is a direct relationship between deformed Heun class equations and all Painleve equations. In particular, Painleve equations can be also divided into 5 supertypes, and subdivided into 10 types. This relationship is not so easy to describe in a completely unified way, because the choice of the \"time variable\" may depend on the type. We describe unified treatments for several possible \"time variables\".","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In the first part of our paper we discuss linear 2nd order differential equations in the complex domain, especially Heun class equations, that is, the Heun equation and its confluent cases. The second part of our paper is devoted to Painleve I-VI equations.
Our philosophy is to treat these families of equations in a unified way. This philosophy works especially well for Heun class equations. We discuss its classification into 5 supertypes, subdivided into 10 types (not counting trivial cases). We also introduce in a unified way deformed Heun class equations, which contain an additional nonlogarithmic singularity. We show that there is a direct relationship between deformed Heun class equations and all Painleve equations. In particular, Painleve equations can be also divided into 5 supertypes, and subdivided into 10 types. This relationship is not so easy to describe in a completely unified way, because the choice of the "time variable" may depend on the type. We describe unified treatments for several possible "time variables".