{"title":"Augmentations are sheaves for Legendrian graphs","authors":"B. An, Youngjin Bae, Tao Su","doi":"10.4310/jsg.2022.v20.n2.a1","DOIUrl":null,"url":null,"abstract":"In this article, associated to a (bordered) Legendrian graph, we study and show the equivalence between two categorical Legendrian isotopy invariants: the augmentation category, a unital $A_{\\infty}$-category, which lifts the set of augmentations of the associated Chekanov-Eliashberg DGA, and a DG category of constructible sheaves on the front plane, with micro-support at contact infinity controlled by the (bordered) Legendrian graph. In other words, generalizing [21], we prove \"augmentations are sheaves\" in the singular case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this article, associated to a (bordered) Legendrian graph, we study and show the equivalence between two categorical Legendrian isotopy invariants: the augmentation category, a unital $A_{\infty}$-category, which lifts the set of augmentations of the associated Chekanov-Eliashberg DGA, and a DG category of constructible sheaves on the front plane, with micro-support at contact infinity controlled by the (bordered) Legendrian graph. In other words, generalizing [21], we prove "augmentations are sheaves" in the singular case.