Augmentations are sheaves for Legendrian graphs

Pub Date : 2019-12-23 DOI:10.4310/jsg.2022.v20.n2.a1
B. An, Youngjin Bae, Tao Su
{"title":"Augmentations are sheaves for Legendrian graphs","authors":"B. An, Youngjin Bae, Tao Su","doi":"10.4310/jsg.2022.v20.n2.a1","DOIUrl":null,"url":null,"abstract":"In this article, associated to a (bordered) Legendrian graph, we study and show the equivalence between two categorical Legendrian isotopy invariants: the augmentation category, a unital $A_{\\infty}$-category, which lifts the set of augmentations of the associated Chekanov-Eliashberg DGA, and a DG category of constructible sheaves on the front plane, with micro-support at contact infinity controlled by the (bordered) Legendrian graph. In other words, generalizing [21], we prove \"augmentations are sheaves\" in the singular case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this article, associated to a (bordered) Legendrian graph, we study and show the equivalence between two categorical Legendrian isotopy invariants: the augmentation category, a unital $A_{\infty}$-category, which lifts the set of augmentations of the associated Chekanov-Eliashberg DGA, and a DG category of constructible sheaves on the front plane, with micro-support at contact infinity controlled by the (bordered) Legendrian graph. In other words, generalizing [21], we prove "augmentations are sheaves" in the singular case.
分享
查看原文
增广是勒让图的束
本文结合(有边)Legendrian图,研究并证明了两个范畴Legendrian不变量之间的等价性:增强范畴,一个提升相关Chekanov-Eliashberg DGA的增广集合的一元$A_{\infty}$ -范畴,和一个在前平面上具有微支撑的DG范畴,在接触无穷远处由(有边)Legendrian图控制。换句话说,推广[21],我们证明了在奇异情况下“增广是束”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信