{"title":"The effects of gamma irradiation on GaAs HBT","authors":"Yang Shi, Lü Hong-Liang, Zhang Yu-ming, Zhang Yi-men, Zhang Jin-Can, Zhang Hai-Peng","doi":"10.1109/EDSSC.2011.6117663","DOIUrl":null,"url":null,"abstract":"The effects of gamma irradiation on Gallium-Arsenide (GaAs) Heterojunction Bipolar Transistor (HBT) is reported. DC and Radio Frequency (RF) performance are investigated for gamma doses up to 7 Mrad(Si). After 7Mrad(Si) gamma irradiation, an increase of base current (lb) is observed, the change is thought to be mainly due to the reduction of the effective minority carrier lifetime (τ) in the n-type emitter. Besides, the cutoff frequency (fT) decreases, which is caused by the decrease of the electron mobility (µn) in the base and the collector-base space charge region.","PeriodicalId":6363,"journal":{"name":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2011.6117663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The effects of gamma irradiation on Gallium-Arsenide (GaAs) Heterojunction Bipolar Transistor (HBT) is reported. DC and Radio Frequency (RF) performance are investigated for gamma doses up to 7 Mrad(Si). After 7Mrad(Si) gamma irradiation, an increase of base current (lb) is observed, the change is thought to be mainly due to the reduction of the effective minority carrier lifetime (τ) in the n-type emitter. Besides, the cutoff frequency (fT) decreases, which is caused by the decrease of the electron mobility (µn) in the base and the collector-base space charge region.