Potentials for PdAgCu Metal Hydrides Energy Simulations

I. Hijazi, Chaonan Zhang, Robert Fuller
{"title":"Potentials for PdAgCu Metal Hydrides Energy Simulations","authors":"I. Hijazi, Chaonan Zhang, Robert Fuller","doi":"10.1115/imece2021-71494","DOIUrl":null,"url":null,"abstract":"\n Palladium hydride (Pd-H) is a metallic palladium that can absorb substantial amount of H at room temperature. Because this H absorption is recoverable, it can be utilized in a variety of energy applications. When Pd is alloyed with silver (Ag), sulfur poisoning remains a problem, but adding Ag improves Pd mechanical properties, boosts hydrogen permeability and solubility, and narrows the Pd-H system miscibility gap region. Pd alloyed with copper (Cu) has a lower H permeability and solubility compared to pure Pd and Pd-Ag alloys, but adding Cu gives better sulfur and carbon monoxide poisoning resistance and hydrogen embrittlement resistance, as well as better mechanical properties and a wider operating temperature range than pure Pd. These findings show that alloying Pd with a mix of Ag and Cu to make Pd-Ag-Cu ternary alloys improves Pd’s overall performance while also lowering its cost. Thus, in this paper, we provide the first embedded atom method potentials (EAM) for the quaternary hydrides Pd1-y-zAgyCuzHx. The EAM potentials can capture the preferred H occupancy locations, and determine the trends for the cohesive energies, lattice constants and elastic constants during MD simulations. The potentials also captured the existence of a miscibility gap for the Pd1-y-zAgyCuzHx and predicted it to narrow and disappear when Ag and Cu concentration increases, as was predicted by the experimental findings.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-71494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Palladium hydride (Pd-H) is a metallic palladium that can absorb substantial amount of H at room temperature. Because this H absorption is recoverable, it can be utilized in a variety of energy applications. When Pd is alloyed with silver (Ag), sulfur poisoning remains a problem, but adding Ag improves Pd mechanical properties, boosts hydrogen permeability and solubility, and narrows the Pd-H system miscibility gap region. Pd alloyed with copper (Cu) has a lower H permeability and solubility compared to pure Pd and Pd-Ag alloys, but adding Cu gives better sulfur and carbon monoxide poisoning resistance and hydrogen embrittlement resistance, as well as better mechanical properties and a wider operating temperature range than pure Pd. These findings show that alloying Pd with a mix of Ag and Cu to make Pd-Ag-Cu ternary alloys improves Pd’s overall performance while also lowering its cost. Thus, in this paper, we provide the first embedded atom method potentials (EAM) for the quaternary hydrides Pd1-y-zAgyCuzHx. The EAM potentials can capture the preferred H occupancy locations, and determine the trends for the cohesive energies, lattice constants and elastic constants during MD simulations. The potentials also captured the existence of a miscibility gap for the Pd1-y-zAgyCuzHx and predicted it to narrow and disappear when Ag and Cu concentration increases, as was predicted by the experimental findings.
钯铜金属氢化物的势能模拟
氢化钯(Pd-H)是一种在室温下能吸收大量氢的金属钯。因为这种氢吸收是可回收的,所以它可以用于各种能源应用。当钯与银(Ag)合金时,硫中毒问题仍然存在,但Ag的加入改善了钯的力学性能,提高了氢的渗透性和溶解度,缩小了钯-氢体系的混相间隙区。与纯Pd和纯Pd- ag合金相比,铜(Cu)合金的H渗透率和溶解度较低,但加入Cu后具有更好的抗硫、一氧化碳中毒和抗氢脆性能,力学性能更好,工作温度范围更广。这些发现表明,将Pd与Ag和Cu混合制成Pd-Ag-Cu三元合金可以提高Pd的整体性能,同时降低其成本。因此,在本文中,我们提供了Pd1-y-zAgyCuzHx的第一个嵌入原子法电位(EAM)。在分子动力学模拟过程中,EAM势可以捕获优选的H占位位置,并确定内聚能、晶格常数和弹性常数的变化趋势。电位还捕获了Pd1-y-zAgyCuzHx的混相间隙的存在,并预测当Ag和Cu浓度增加时,它会缩小并消失,正如实验结果所预测的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信