{"title":"Kinetic to Potential Energy Transformation Using an Elastica","authors":"Sheryl Chau, R. Mukherjee","doi":"10.1115/dscc2019-8929","DOIUrl":null,"url":null,"abstract":"\n The kinetic energy of a mass traveling in the horizontal direction can be fully transformed into potential energy using an elastica as a temporary storage element. This problem, which resembles the sport of pole-vaulting, is investigated using a non-dimensional framework and by solving the ensuing two-point boundary problem. Dimensional studies are conducted with the objective of better understanding the role of the mass of the vaulter, modeled here as the mass attached to the elastica, and torque applied by the vaulter, modeled here as external torque on the elastica, on vaulting performance. Simulation results indicate better vaulting performance, as indicated by higher non-dimensional potential energy, for lower mass and higher torque.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"108 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-8929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The kinetic energy of a mass traveling in the horizontal direction can be fully transformed into potential energy using an elastica as a temporary storage element. This problem, which resembles the sport of pole-vaulting, is investigated using a non-dimensional framework and by solving the ensuing two-point boundary problem. Dimensional studies are conducted with the objective of better understanding the role of the mass of the vaulter, modeled here as the mass attached to the elastica, and torque applied by the vaulter, modeled here as external torque on the elastica, on vaulting performance. Simulation results indicate better vaulting performance, as indicated by higher non-dimensional potential energy, for lower mass and higher torque.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.