An experimental and theoretical investigation of the influence of backlash on gear train vibro-impacts and rattle noise

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
A. Donmez, A. Kahraman
{"title":"An experimental and theoretical investigation of the influence of backlash on gear train vibro-impacts and rattle noise","authors":"A. Donmez, A. Kahraman","doi":"10.1177/14644193221134322","DOIUrl":null,"url":null,"abstract":"Rattling is a perennial gear noise problem observed in various powertrain components ranging from manual transmissions to engine balancers and timing gear trains. Under lightly loaded conditions, gear systems that are subjected to input and/or output torque fluctuations exhibit vibro-impacts as tooth separations and coast-side contacts take place in the presence of backlash. Experimental set-ups that can impose tightly controlled torque fluctuations to single or multi-mesh gear train are used here to determine the sensitivity of the rattling noise levels to the magnitudes of backlash within wide ranges of torque fluctuation parameters. Torsional discrete models of the experimental set-ups were used to simulate these rattling motions and to predict impact velocity-based rattle severity indexes as a function of both excitation parameters and backlash magnitudes. Single-mesh results show that the larger backlash values result in higher noise levels in most of the cases. In case of double-mesh systems, the resultant noise levels and the corresponding rattle indices exhibit different sensitivities to backlash magnitudes depending on the excitation conditions.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193221134322","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Rattling is a perennial gear noise problem observed in various powertrain components ranging from manual transmissions to engine balancers and timing gear trains. Under lightly loaded conditions, gear systems that are subjected to input and/or output torque fluctuations exhibit vibro-impacts as tooth separations and coast-side contacts take place in the presence of backlash. Experimental set-ups that can impose tightly controlled torque fluctuations to single or multi-mesh gear train are used here to determine the sensitivity of the rattling noise levels to the magnitudes of backlash within wide ranges of torque fluctuation parameters. Torsional discrete models of the experimental set-ups were used to simulate these rattling motions and to predict impact velocity-based rattle severity indexes as a function of both excitation parameters and backlash magnitudes. Single-mesh results show that the larger backlash values result in higher noise levels in most of the cases. In case of double-mesh systems, the resultant noise levels and the corresponding rattle indices exhibit different sensitivities to backlash magnitudes depending on the excitation conditions.
对齿隙对轮系振动冲击和颤振噪声的影响进行了实验和理论研究
嘎嘎声是一种长期存在的齿轮噪声问题,存在于从手动变速箱到发动机平衡器和正时齿轮系的各种动力总成部件中。在轻载荷条件下,当齿分离和海岸侧接触发生时,受到输入和/或输出扭矩波动的齿轮系统会表现出振动冲击。实验装置可以对单啮合或多啮合轮系施加严格控制的转矩波动,用于确定在大范围的转矩波动参数范围内,咔嗒声噪声水平对间隙大小的敏感性。实验装置的扭转离散模型用于模拟这些振动运动,并预测基于冲击速度的振动严重指数作为激励参数和间隙大小的函数。单网格结果表明,在大多数情况下,较大的间隙值导致较高的噪声水平。在双网格系统中,根据激励条件的不同,产生的噪声级和相应的响动指数对间隙大小的敏感性不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
11.10%
发文量
38
审稿时长
>12 weeks
期刊介绍: The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信