Geodesic walks in polytopes

Y. Lee, S. Vempala
{"title":"Geodesic walks in polytopes","authors":"Y. Lee, S. Vempala","doi":"10.1145/3055399.3055416","DOIUrl":null,"url":null,"abstract":"We introduce the geodesic walk for sampling Riemannian manifolds and apply it to the problem of generating uniform random points from the interior of polytopes in ℝn specified by m inequalities. The walk is a discrete-time simulation of a stochastic differential equation (SDE) on the Riemannian manifold equipped with the metric induced by the Hessian of a convex function; each step is the solution of an ordinary differential equation (ODE). The resulting sampling algorithm for polytopes mixes in O*(mn3/4) steps. This is the first walk that breaks the quadratic barrier for mixing in high dimension, improving on the previous best bound of O*(mn) by Kannan and Narayanan for the Dikin walk. We also show that each step of the geodesic walk (solving an ODE) can be implemented efficiently, thus improving the time complexity for sampling polytopes. Our analysis of the geodesic walk for general Hessian manifolds does not assume positive curvature and might be of independent interest.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

We introduce the geodesic walk for sampling Riemannian manifolds and apply it to the problem of generating uniform random points from the interior of polytopes in ℝn specified by m inequalities. The walk is a discrete-time simulation of a stochastic differential equation (SDE) on the Riemannian manifold equipped with the metric induced by the Hessian of a convex function; each step is the solution of an ordinary differential equation (ODE). The resulting sampling algorithm for polytopes mixes in O*(mn3/4) steps. This is the first walk that breaks the quadratic barrier for mixing in high dimension, improving on the previous best bound of O*(mn) by Kannan and Narayanan for the Dikin walk. We also show that each step of the geodesic walk (solving an ODE) can be implemented efficiently, thus improving the time complexity for sampling polytopes. Our analysis of the geodesic walk for general Hessian manifolds does not assume positive curvature and might be of independent interest.
多面体的测地线行走
我们引入了采样黎曼流形的测地线行走方法,并将其应用于由m个不等式指定的n中多面体内部生成一致随机点的问题。该漫步是一个随机微分方程(SDE)在黎曼流形上的离散时间模拟,黎曼流形配备了由凸函数的Hessian诱导的度量;每一步都是一个常微分方程(ODE)的解。得到的多面体混合采样算法为O*(mn3/4)步。这是第一个打破高维混合的二次障碍的行走,改进了Kannan和Narayanan之前对Dikin行走的最佳界O*(mn)。我们还证明了测地线行走的每一步(求解ODE)都可以有效地实现,从而提高了采样多面体的时间复杂度。我们对一般Hessian流形测地线行走的分析没有假设正曲率,可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信