Engineering sub-wavelength silicon waveguides for sensing applications in the near-infrared and mid-infrared band (Conference Presentation)

J. G. Wanguemert-Perez, A. Sánchez-Postigo, A. Hadij-ElHouati, J. Leuermann, C. Pérez-Armenta, J. Luque‐González, A. Ortega-Moñux, R. Halir, Í. Molina-Fernández, P. Cheben, Danxia Xu, J. Schmid, J. Čtyroký, J. Soler-Penadés, M. Nedeljkovic, G. Mashanovich
{"title":"Engineering sub-wavelength silicon waveguides for sensing applications in the near-infrared and mid-infrared band (Conference Presentation)","authors":"J. G. Wanguemert-Perez, A. Sánchez-Postigo, A. Hadij-ElHouati, J. Leuermann, C. Pérez-Armenta, J. Luque‐González, A. Ortega-Moñux, R. Halir, Í. Molina-Fernández, P. Cheben, Danxia Xu, J. Schmid, J. Čtyroký, J. Soler-Penadés, M. Nedeljkovic, G. Mashanovich","doi":"10.1117/12.2508749","DOIUrl":null,"url":null,"abstract":"Silicon photonics is one of the most promising candidates to achieve lab-on-a-chip systems. Making use of the evanescent-field sensing principle, it is possible to determine the presence and concentration of substances by simply measuring the variation produced by the light-matter interaction in the real part of the mode effective index (in the near-infrared band), or in its imaginary part in a specific range of wavelengths (in the mid-infrared band).\nRegardless of which is the operating wavelength range, it is essential to select the proper sensing waveguide in order to maximize the device sensitivity. In this work we will review the potential of diffractionless subwavelength grating waveguides (SWG) for sensing applications by demonstrating their powerful capability to engineer the spatial distribution of the mode profile, and thereby to maximize the light-matter interaction. Among other things, we will demonstrate that the SWG waveguide dimensions used until now in the near-infrared are not optimal for sensing applications.\nIn the mid-infrared band, due to the unacceptable losses of silicon dioxide for wavelengths longer than 4 μm, an additional effort is required to provide a more convenient platform for the development of future applications. In this regard, we will also show our recent progress in the development of a new platform, the suspended silicon waveguide with subwavelength metamaterial cladding. A complete set of elemental building blocks capable of covering the full transparency window of silicon (λ < ∼8.5 μm) will be discussed.","PeriodicalId":21725,"journal":{"name":"Silicon Photonics XIV","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon Photonics XIV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2508749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon photonics is one of the most promising candidates to achieve lab-on-a-chip systems. Making use of the evanescent-field sensing principle, it is possible to determine the presence and concentration of substances by simply measuring the variation produced by the light-matter interaction in the real part of the mode effective index (in the near-infrared band), or in its imaginary part in a specific range of wavelengths (in the mid-infrared band). Regardless of which is the operating wavelength range, it is essential to select the proper sensing waveguide in order to maximize the device sensitivity. In this work we will review the potential of diffractionless subwavelength grating waveguides (SWG) for sensing applications by demonstrating their powerful capability to engineer the spatial distribution of the mode profile, and thereby to maximize the light-matter interaction. Among other things, we will demonstrate that the SWG waveguide dimensions used until now in the near-infrared are not optimal for sensing applications. In the mid-infrared band, due to the unacceptable losses of silicon dioxide for wavelengths longer than 4 μm, an additional effort is required to provide a more convenient platform for the development of future applications. In this regard, we will also show our recent progress in the development of a new platform, the suspended silicon waveguide with subwavelength metamaterial cladding. A complete set of elemental building blocks capable of covering the full transparency window of silicon (λ < ∼8.5 μm) will be discussed.
用于近红外和中红外波段传感应用的工程亚波长硅波导(会议报告)
硅光子学是最有希望实现片上实验室系统的候选者之一。利用倏逝场传感原理,可以通过简单地测量光-物质相互作用在模式有效指数的实部(近红外波段)或在特定波长范围内(中红外波段)的虚部所产生的变化来确定物质的存在和浓度。无论工作波长范围是什么,为了最大限度地提高器件灵敏度,选择合适的传感波导是至关重要的。在这项工作中,我们将回顾无衍射亚波长光栅波导(SWG)在传感应用中的潜力,通过展示其强大的能力来设计模式剖面的空间分布,从而最大化光-物质相互作用。除其他事项外,我们将证明到目前为止在近红外中使用的SWG波导尺寸并不是传感应用的最佳选择。在中红外波段,由于二氧化硅在波长大于4 μm时的损耗是不可接受的,因此需要额外的努力来为未来应用的开发提供更方便的平台。在这方面,我们还将展示我们最近在开发新平台方面的进展,即亚波长超材料包层的悬浮硅波导。一套完整的元素构建块能够覆盖硅的全透明窗口(λ < ~ 8.5 μm)将被讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信