Intelligent language analysis method for multi-sensor data fusion

IF 0.9 Q4 TELECOMMUNICATIONS
Tengxiao Han
{"title":"Intelligent language analysis method for multi-sensor data fusion","authors":"Tengxiao Han","doi":"10.1002/itl2.441","DOIUrl":null,"url":null,"abstract":"<p>Language intelligence analysis oriented to multi-sensor data fusion is of great significance for language analysis in real scenarios. On the one hand, intelligent language analysis technology can greatly improve the performance of applications such as information retrieval and machine translation, and provide technical support for semantic-level applications. On the other hand, each language has its own unique characteristics, and the advancement of the language system through language analysis technology is of great benefit to natural language analysis. In this letter, an intelligent language analysis method for multi-sensor data fusion is elaborated. Specifically, the Kalman filter algorithm is combined to perform the first preprocessing filter fusion on multi-sensor data. Then, the deep learning model is used to design a language analysis model using Bidirectional Long-Short Memory Neural Networks (Bi-LSTM) to obtain deep fusion of multi-sensor data. In the experiment, the multi-sensors are used to collect real language data and public language datasets for verification, and the results show the effectiveness of the method proposed in this letter in terms of syntactic label classification.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Language intelligence analysis oriented to multi-sensor data fusion is of great significance for language analysis in real scenarios. On the one hand, intelligent language analysis technology can greatly improve the performance of applications such as information retrieval and machine translation, and provide technical support for semantic-level applications. On the other hand, each language has its own unique characteristics, and the advancement of the language system through language analysis technology is of great benefit to natural language analysis. In this letter, an intelligent language analysis method for multi-sensor data fusion is elaborated. Specifically, the Kalman filter algorithm is combined to perform the first preprocessing filter fusion on multi-sensor data. Then, the deep learning model is used to design a language analysis model using Bidirectional Long-Short Memory Neural Networks (Bi-LSTM) to obtain deep fusion of multi-sensor data. In the experiment, the multi-sensors are used to collect real language data and public language datasets for verification, and the results show the effectiveness of the method proposed in this letter in terms of syntactic label classification.

多传感器数据融合的智能语言分析方法
面向多传感器数据融合的语言智能分析对于实际场景中的语言分析具有重要意义。一方面,智能语言分析技术可以大大提高信息检索、机器翻译等应用的性能,为语义层面的应用提供技术支持。另一方面,每种语言都有自己独特的特点,通过语言分析技术提升语言系统的水平对自然语言分析大有裨益。本文阐述了一种用于多传感器数据融合的智能语言分析方法。具体来说,结合卡尔曼滤波算法,对多传感器数据进行第一次预处理滤波融合。然后,利用深度学习模型,使用双向长短记忆神经网络(Bi-LSTM)设计语言分析模型,从而实现多传感器数据的深度融合。在实验中,利用多传感器采集了真实语言数据和公共语言数据集进行验证,结果表明了本文提出的方法在句法标签分类方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信