Joint optimization of overlapping phases in MapReduce

Minghong Lin, Li Zhang, A. Wierman, Jian Tan
{"title":"Joint optimization of overlapping phases in MapReduce","authors":"Minghong Lin, Li Zhang, A. Wierman, Jian Tan","doi":"10.1145/2567529.2567534","DOIUrl":null,"url":null,"abstract":"MapReduce is a scalable parallel computing framework for big data processing. It exhibits multiple processing phases, and thus an efficient job scheduling mechanism is crucial for ensuring efficient resource utilization. This work studies the scheduling challenge that results from the overlapping of the \"map\" and \"shuffle\" phases in MapReduce. We propose a new, general model for this scheduling problem. Further, we prove that scheduling to minimize average response time in this model is strongly NP-hard in the offline case and that no online algorithm can be constant-competitive in the online case. However, we provide two online algorithms that match the performance of the offline optimal when given a slightly faster service rate.","PeriodicalId":19766,"journal":{"name":"Perform. Evaluation","volume":"12 1","pages":"720-735"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perform. Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2567529.2567534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

MapReduce is a scalable parallel computing framework for big data processing. It exhibits multiple processing phases, and thus an efficient job scheduling mechanism is crucial for ensuring efficient resource utilization. This work studies the scheduling challenge that results from the overlapping of the "map" and "shuffle" phases in MapReduce. We propose a new, general model for this scheduling problem. Further, we prove that scheduling to minimize average response time in this model is strongly NP-hard in the offline case and that no online algorithm can be constant-competitive in the online case. However, we provide two online algorithms that match the performance of the offline optimal when given a slightly faster service rate.
MapReduce中重叠相位的联合优化
MapReduce是一个用于大数据处理的可扩展并行计算框架。它具有多个处理阶段,因此有效的作业调度机制对于确保有效的资源利用至关重要。这项工作研究了由于MapReduce中“map”和“shuffle”阶段重叠而导致的调度挑战。我们提出了一个新的、通用的调度问题模型。进一步,我们证明了该模型中最小化平均响应时间的调度在离线情况下是强np困难的,并且在在线情况下没有在线算法可以持续竞争。然而,我们提供了两种在线算法,当给定略快的服务速率时,它们的性能与离线最优算法相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信