Learning the Semantic Landscape: embedding scene knowledge in object tracking

D. Greenhill, J. Renno, J. Orwell, G.A. Jones
{"title":"Learning the Semantic Landscape: embedding scene knowledge in object tracking","authors":"D. Greenhill,&nbsp;J. Renno,&nbsp;J. Orwell,&nbsp;G.A. Jones","doi":"10.1016/j.rti.2004.12.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>The accuracy of object tracking methodologies can be significantly improved by utilizing knowledge about the monitored scene. Such scene knowledge includes the homography between the camera and ground planes and the </span><em>occlusion landscape</em> identifying the depth map associated with the static occlusions in the scene. Using the ground plane, a simple method of relating the projected height and width of people objects to image location is used to constrain the dimensions of appearance models. Moreover, trajectory modeling can be greatly improved by performing tracking on the ground-plane tracking using global real-world noise models for the observation and dynamic processes. Finally, the <em>occlusion landscape</em><span> allows the tracker to predict the complete or partial occlusion of object observations. To facilitate </span><em>plug and play</em> functionality, this scene knowledge must be automatically learnt. The paper demonstrates how, over a sufficient length of time, observations from the monitored scene itself can be used to parameterize the <em>semantic landscape</em>.</p></div>","PeriodicalId":101062,"journal":{"name":"Real-Time Imaging","volume":"11 3","pages":"Pages 186-203"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rti.2004.12.002","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077201405000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The accuracy of object tracking methodologies can be significantly improved by utilizing knowledge about the monitored scene. Such scene knowledge includes the homography between the camera and ground planes and the occlusion landscape identifying the depth map associated with the static occlusions in the scene. Using the ground plane, a simple method of relating the projected height and width of people objects to image location is used to constrain the dimensions of appearance models. Moreover, trajectory modeling can be greatly improved by performing tracking on the ground-plane tracking using global real-world noise models for the observation and dynamic processes. Finally, the occlusion landscape allows the tracker to predict the complete or partial occlusion of object observations. To facilitate plug and play functionality, this scene knowledge must be automatically learnt. The paper demonstrates how, over a sufficient length of time, observations from the monitored scene itself can be used to parameterize the semantic landscape.

学习语义景观:在目标跟踪中嵌入场景知识
利用被监控场景的相关知识,可以显著提高目标跟踪方法的准确性。这样的场景知识包括相机和地面平面之间的单应性,以及识别场景中与静态遮挡相关的深度图的遮挡景观。利用地平面,将人物物体的投影高度和宽度与图像位置相关联的简单方法用于约束外观模型的尺寸。此外,利用观测和动态过程的全局真实噪声模型对地平面跟踪进行跟踪,可以极大地改进轨迹建模。最后,遮挡景观允许跟踪器预测物体观测的完全或部分遮挡。为了方便即插即用功能,必须自动学习这些场景知识。本文演示了如何在足够长的时间内,从监测场景本身观察到的信息可以用于参数化语义景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信