Divisibility Properties of Power Matrices Associated with Arithmetic Functions on a Divisor Chain

Pub Date : 2022-07-26 DOI:10.1142/s1005386722000396
Long Chen, Zongbing Lin, Qianrong Tan
{"title":"Divisibility Properties of Power Matrices Associated with Arithmetic Functions on a Divisor Chain","authors":"Long Chen, Zongbing Lin, Qianrong Tan","doi":"10.1142/s1005386722000396","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text], [Formula: see text] and [Formula: see text] be positive integers with[Formula: see text], [Formula: see text] be an integer-valued arithmetic function, and the set [Formula: see text] of [Formula: see text] distinct positive integers be a divisor chain such that [Formula: see text]. We first show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the greatest common divisor of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the GCD matrix [Formula: see text] in the ring [Formula: see text] of [Formula: see text] matrices over integers if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Consequently, we show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the least common multiple of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with[Formula: see text]. Finally, we prove that the matrix [Formula: see text] divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Our results extend and strengthen the theorems of Hong obtained in 2008.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text], [Formula: see text] and [Formula: see text] be positive integers with[Formula: see text], [Formula: see text] be an integer-valued arithmetic function, and the set [Formula: see text] of [Formula: see text] distinct positive integers be a divisor chain such that [Formula: see text]. We first show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the greatest common divisor of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the GCD matrix [Formula: see text] in the ring [Formula: see text] of [Formula: see text] matrices over integers if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Consequently, we show that the matrix [Formula: see text] having [Formula: see text] evaluated at the [Formula: see text]th power [Formula: see text] of the least common multiple of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] divides [Formula: see text] for any integer [Formula: see text] with[Formula: see text]. Finally, we prove that the matrix [Formula: see text] divides the matrix [Formula: see text] in the ring [Formula: see text] if and only if [Formula: see text] and [Formula: see text] for any integer [Formula: see text] with [Formula: see text]. Our results extend and strengthen the theorems of Hong obtained in 2008.
分享
查看原文
除数链上算术函数幂矩阵的可整除性
设[公式:见文]、[公式:见文]和[公式:见文]为具有[公式:见文]的正整数,[公式:见文]为整数算术函数,且[公式:见文]的不同正整数集[公式:见文]为一个除数链,使得[公式:见文]。我们首先证明,矩阵[公式:见文]在[公式:见文]和[公式:见文]的[公式:见文]的最大公约数的[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]的[公式:见文]项的[公式:见文]的环中除[公式:见文]的GCD矩阵[公式:见文]当且仅当[公式:见文]和[公式:见文]除任意整数[公式:见文]的[公式:见文][公式:见文]。[公式:见文本]。因此,我们证明,矩阵[公式:见文]以[公式:见文]和[公式:见文]的最小公倍数[公式:见文]的[公式:见文]的[公式:见文]为其[公式:见文]条目的[公式:见文]除环中的矩阵[公式:见文]当且仅当[公式:见文]和[公式:见文]除任意整数[公式:见文]与[公式:见文]的[公式:见文]。最后,我们证明了矩阵[公式:见文]在环[公式:见文]中除矩阵[公式:见文]当且仅当[公式:见文]和[公式:见文]对任意整数[公式:见文]与[公式:见文]相除。我们的结果推广并加强了Hong在2008年得到的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信