Raven

Sadeem Alsudais, Avinash Kumar, Chen Li
{"title":"Raven","authors":"Sadeem Alsudais, Avinash Kumar, Chen Li","doi":"10.1145/3597465.3605219","DOIUrl":null,"url":null,"abstract":"Using GUI-based workflows for data analysis is an iterative process. During each iteration, an analyst makes changes to the workflow to improve it, generating a new version each time. The results produced by executing these versions are materialized to help users refer to them in the future. In many cases, a new version of the workflow, when submitted for execution, produces a result equivalent to that of a previous one. Identifying such equivalence can save computational resources and time by reusing the materialized result. One way to optimize the performance of executing a new version is to compare the current version with a previous one and test if they produce the same results using a workflow version equivalence verifier. As the number of versions grows, this testing can become a computational bottleneck. In this paper, we present Raven, an optimization framework to accelerate the execution of a new version request by detecting and reusing the results of previous equivalent versions with the help of a version equivalence verifier. Raven ranks and prunes the set of prior versions to quickly identify those that may produce an equivalent result to the version execution request. Additionally, when the verifier performs computation to verify the equivalence of a version pair, there may be a significant overlap with previously tested version pairs. Raven identifies and avoids such repeated computations by extending the verifier to reuse previous knowledge of equivalence tests. We evaluated the effectiveness of Raven compared to baselines on real workflows and datasets.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597465.3605219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Using GUI-based workflows for data analysis is an iterative process. During each iteration, an analyst makes changes to the workflow to improve it, generating a new version each time. The results produced by executing these versions are materialized to help users refer to them in the future. In many cases, a new version of the workflow, when submitted for execution, produces a result equivalent to that of a previous one. Identifying such equivalence can save computational resources and time by reusing the materialized result. One way to optimize the performance of executing a new version is to compare the current version with a previous one and test if they produce the same results using a workflow version equivalence verifier. As the number of versions grows, this testing can become a computational bottleneck. In this paper, we present Raven, an optimization framework to accelerate the execution of a new version request by detecting and reusing the results of previous equivalent versions with the help of a version equivalence verifier. Raven ranks and prunes the set of prior versions to quickly identify those that may produce an equivalent result to the version execution request. Additionally, when the verifier performs computation to verify the equivalence of a version pair, there may be a significant overlap with previously tested version pairs. Raven identifies and avoids such repeated computations by extending the verifier to reuse previous knowledge of equivalence tests. We evaluated the effectiveness of Raven compared to baselines on real workflows and datasets.
乌鸦
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信