{"title":"Raven","authors":"Sadeem Alsudais, Avinash Kumar, Chen Li","doi":"10.1145/3597465.3605219","DOIUrl":null,"url":null,"abstract":"Using GUI-based workflows for data analysis is an iterative process. During each iteration, an analyst makes changes to the workflow to improve it, generating a new version each time. The results produced by executing these versions are materialized to help users refer to them in the future. In many cases, a new version of the workflow, when submitted for execution, produces a result equivalent to that of a previous one. Identifying such equivalence can save computational resources and time by reusing the materialized result. One way to optimize the performance of executing a new version is to compare the current version with a previous one and test if they produce the same results using a workflow version equivalence verifier. As the number of versions grows, this testing can become a computational bottleneck. In this paper, we present Raven, an optimization framework to accelerate the execution of a new version request by detecting and reusing the results of previous equivalent versions with the help of a version equivalence verifier. Raven ranks and prunes the set of prior versions to quickly identify those that may produce an equivalent result to the version execution request. Additionally, when the verifier performs computation to verify the equivalence of a version pair, there may be a significant overlap with previously tested version pairs. Raven identifies and avoids such repeated computations by extending the verifier to reuse previous knowledge of equivalence tests. We evaluated the effectiveness of Raven compared to baselines on real workflows and datasets.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597465.3605219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Using GUI-based workflows for data analysis is an iterative process. During each iteration, an analyst makes changes to the workflow to improve it, generating a new version each time. The results produced by executing these versions are materialized to help users refer to them in the future. In many cases, a new version of the workflow, when submitted for execution, produces a result equivalent to that of a previous one. Identifying such equivalence can save computational resources and time by reusing the materialized result. One way to optimize the performance of executing a new version is to compare the current version with a previous one and test if they produce the same results using a workflow version equivalence verifier. As the number of versions grows, this testing can become a computational bottleneck. In this paper, we present Raven, an optimization framework to accelerate the execution of a new version request by detecting and reusing the results of previous equivalent versions with the help of a version equivalence verifier. Raven ranks and prunes the set of prior versions to quickly identify those that may produce an equivalent result to the version execution request. Additionally, when the verifier performs computation to verify the equivalence of a version pair, there may be a significant overlap with previously tested version pairs. Raven identifies and avoids such repeated computations by extending the verifier to reuse previous knowledge of equivalence tests. We evaluated the effectiveness of Raven compared to baselines on real workflows and datasets.