Rethinking the Detection of Child Sexual Abuse Imagery on the Internet

Elie Bursztein, Einat Clarke, Michelle DeLaune, David M. Elifff, Nick Hsu, Lindsey Olson, John Shehan, Madhukar Thakur, Kurt Thomas, Travis Bright
{"title":"Rethinking the Detection of Child Sexual Abuse Imagery on the Internet","authors":"Elie Bursztein, Einat Clarke, Michelle DeLaune, David M. Elifff, Nick Hsu, Lindsey Olson, John Shehan, Madhukar Thakur, Kurt Thomas, Travis Bright","doi":"10.1145/3308558.3313482","DOIUrl":null,"url":null,"abstract":"Over the last decade, the illegal distribution of child sexual abuse imagery (CSAI) has transformed alongside the rise of online sharing platforms. In this paper, we present the first longitudinal measurement study of CSAI distribution online and the threat it poses to society's ability to combat child sexual abuse. Our results illustrate that CSAI has grown exponentially-to nearly 1 million detected events per month-exceeding the capabilities of independent clearinghouses and law enforcement to take action. In order to scale CSAI protections moving forward, we discuss techniques for automating detection and response by using recent advancements in machine learning.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Over the last decade, the illegal distribution of child sexual abuse imagery (CSAI) has transformed alongside the rise of online sharing platforms. In this paper, we present the first longitudinal measurement study of CSAI distribution online and the threat it poses to society's ability to combat child sexual abuse. Our results illustrate that CSAI has grown exponentially-to nearly 1 million detected events per month-exceeding the capabilities of independent clearinghouses and law enforcement to take action. In order to scale CSAI protections moving forward, we discuss techniques for automating detection and response by using recent advancements in machine learning.
对网络儿童性侵图像检测的再思考
在过去的十年里,随着在线分享平台的兴起,非法传播儿童性虐待图像(CSAI)的情况发生了变化。在本文中,我们提出了第一个在线CSAI分布的纵向测量研究,以及它对社会打击儿童性虐待能力的威胁。我们的研究结果表明,CSAI已呈指数级增长——每月检测到近100万起事件,超出了独立清算所和执法部门采取行动的能力。为了进一步扩展CSAI保护,我们讨论了通过使用机器学习的最新进展来自动化检测和响应的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信