Plain convergence of goal-oriented adaptive FEM

Valentin Helml, M. Innerberger, D. Praetorius
{"title":"Plain convergence of goal-oriented adaptive FEM","authors":"Valentin Helml, M. Innerberger, D. Praetorius","doi":"10.48550/arXiv.2208.10143","DOIUrl":null,"url":null,"abstract":"We discuss goal-oriented adaptivity in the frame of conforming finite element methods and plain convergence of the related a posteriori error estimator for different general marking strategies. We present an abstract analysis for two different settings. First, we consider problems where a local discrete efficiency estimate holds. Second, we show plain convergence in a setting that relies only on structural properties of the error estimators, namely stability on non-refined elements as well as reduction on refined elements. In particular, the second setting does not require reliability and efficiency estimates. Numerical experiments underline our theoretical findings.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.10143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss goal-oriented adaptivity in the frame of conforming finite element methods and plain convergence of the related a posteriori error estimator for different general marking strategies. We present an abstract analysis for two different settings. First, we consider problems where a local discrete efficiency estimate holds. Second, we show plain convergence in a setting that relies only on structural properties of the error estimators, namely stability on non-refined elements as well as reduction on refined elements. In particular, the second setting does not require reliability and efficiency estimates. Numerical experiments underline our theoretical findings.
面向目标的自适应有限元法的平面收敛性
针对不同的一般标记策略,我们在一致性有限元方法的框架下讨论了目标导向的自适应性和相关后检误差估计的平实收敛性。我们对两种不同的设置进行了抽象分析。首先,我们考虑局部离散效率估计成立的问题。其次,我们展示了在仅依赖于误差估计器的结构特性的情况下的简单收敛性,即在非精化元素上的稳定性以及在精化元素上的约简性。特别是,第二种设置不需要可靠性和效率估计。数值实验证实了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信