Leveraging Emotional Signals for Credibility Detection

Anastasia Giahanou, Paolo Rosso, F. Crestani
{"title":"Leveraging Emotional Signals for Credibility Detection","authors":"Anastasia Giahanou, Paolo Rosso, F. Crestani","doi":"10.1145/3331184.3331285","DOIUrl":null,"url":null,"abstract":"The spread of false information on the Web is one of the main problems of our society. Automatic detection of fake news posts is a hard task since they are intentionally written to mislead the readers and to trigger intense emotions to them in an attempt to be disseminated in the social networks. Even though recent studies have explored different linguistic patterns of false claims, the role of emotional signals has not yet been explored. In this paper, we study the role of emotional signals in fake news detection. In particular, we propose an LSTM model that incorporates emotional signals extracted from the text of the claims to differentiate between credible and non-credible ones. Experiments on real world datasets show the importance of emotional signals for credibility assessment.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

Abstract

The spread of false information on the Web is one of the main problems of our society. Automatic detection of fake news posts is a hard task since they are intentionally written to mislead the readers and to trigger intense emotions to them in an attempt to be disseminated in the social networks. Even though recent studies have explored different linguistic patterns of false claims, the role of emotional signals has not yet been explored. In this paper, we study the role of emotional signals in fake news detection. In particular, we propose an LSTM model that incorporates emotional signals extracted from the text of the claims to differentiate between credible and non-credible ones. Experiments on real world datasets show the importance of emotional signals for credibility assessment.
利用情感信号进行可信度检测
网络上虚假信息的传播是我们社会的主要问题之一。虚假新闻是为了误导读者,引发读者的强烈情绪,并试图在社交网络上传播,因此自动检测虚假新闻是一项艰巨的任务。尽管最近的研究已经探索了虚假陈述的不同语言模式,但情感信号的作用尚未得到探讨。本文研究了情感信号在假新闻检测中的作用。特别是,我们提出了一个LSTM模型,该模型结合了从声明文本中提取的情感信号,以区分可信和不可信的声明。真实世界数据集的实验表明情绪信号对可信度评估的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信