Detection Evolution with Multi-order Contextual Co-occurrence

Guang Chen, Yuanyuan Ding, Jing Xiao, T. Han
{"title":"Detection Evolution with Multi-order Contextual Co-occurrence","authors":"Guang Chen, Yuanyuan Ding, Jing Xiao, T. Han","doi":"10.1109/CVPR.2013.235","DOIUrl":null,"url":null,"abstract":"Context has been playing an increasingly important role to improve the object detection performance. In this paper we propose an effective representation, Multi-Order Contextual co-Occurrence (MOCO), to implicitly model the high level context using solely detection responses from a baseline object detector. The so-called (1st-order) context feature is computed as a set of randomized binary comparisons on the response map of the baseline object detector. The statistics of the 1st-order binary context features are further calculated to construct a high order co-occurrence descriptor. Combining the MOCO feature with the original image feature, we can evolve the baseline object detector to a stronger context aware detector. With the updated detector, we can continue the evolution till the contextual improvements saturate. Using the successful deformable-part-model detector [13] as the baseline detector, we test the proposed MOCO evolution framework on the PASCAL VOC 2007 dataset [8] and Caltech pedestrian dataset [7]: The proposed MOCO detector outperforms all known state-of-the-art approaches, contextually boosting deformable part models (ver. 5) [13] by 3.3% in mean average precision on the PASCAL 2007 dataset. For the Caltech pedestrian dataset, our method further reduces the log-average miss rate from 48% to 46% and the miss rate at 1 FPPI from 25% to 23%, compared with the best prior art [6].","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"4 1","pages":"1798-1805"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

Context has been playing an increasingly important role to improve the object detection performance. In this paper we propose an effective representation, Multi-Order Contextual co-Occurrence (MOCO), to implicitly model the high level context using solely detection responses from a baseline object detector. The so-called (1st-order) context feature is computed as a set of randomized binary comparisons on the response map of the baseline object detector. The statistics of the 1st-order binary context features are further calculated to construct a high order co-occurrence descriptor. Combining the MOCO feature with the original image feature, we can evolve the baseline object detector to a stronger context aware detector. With the updated detector, we can continue the evolution till the contextual improvements saturate. Using the successful deformable-part-model detector [13] as the baseline detector, we test the proposed MOCO evolution framework on the PASCAL VOC 2007 dataset [8] and Caltech pedestrian dataset [7]: The proposed MOCO detector outperforms all known state-of-the-art approaches, contextually boosting deformable part models (ver. 5) [13] by 3.3% in mean average precision on the PASCAL 2007 dataset. For the Caltech pedestrian dataset, our method further reduces the log-average miss rate from 48% to 46% and the miss rate at 1 FPPI from 25% to 23%, compared with the best prior art [6].
多阶上下文共现的检测进化
上下文在提高目标检测性能方面发挥着越来越重要的作用。在本文中,我们提出了一种有效的表示,即多阶上下文共现(MOCO),它仅使用来自基线对象检测器的检测响应来隐式地建模高级上下文。所谓的(一阶)上下文特征被计算为基线目标检测器响应图上的一组随机二进制比较。进一步计算了一阶二元上下文特征的统计量,构造了一个高阶共现描述符。将MOCO特征与原始图像特征相结合,我们可以将基线目标检测器进化为更强的上下文感知检测器。有了更新的检测器,我们可以继续进化,直到上下文改进饱和。使用成功的可变形零件模型检测器[13]作为基线检测器,我们在PASCAL VOC 2007数据集[8]和Caltech行人数据集[7]上测试了所提出的MOCO进化框架:所提出的MOCO检测器优于所有已知的最先进的方法,在上下文中增强了可变形零件模型(版本1)。5)[13]在PASCAL 2007数据集上的平均精度提高了3.3%。对于加州理工学院行人数据集,与最佳现有技术[6]相比,我们的方法进一步将对数平均缺失率从48%降低到46%,将1 FPPI的缺失率从25%降低到23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信