Almost periodic invariant tori for the NLS on the circle

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Luca Biasco, Jessica Elisa Massetti, Michela Procesi
{"title":"Almost periodic invariant tori for the NLS on the circle","authors":"Luca Biasco,&nbsp;Jessica Elisa Massetti,&nbsp;Michela Procesi","doi":"10.1016/j.anihpc.2020.09.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper we study the existence and linear stability of almost periodic solutions for a NLS equation on the circle with external parameters. Starting from the seminal result of Bourgain in </span><span>[15]</span><span> on the quintic NLS, we propose a novel approach allowing to prove in a unified framework the persistence of finite and infinite dimensional invariant tori, which are the support of the desired solutions. The persistence result is given through a rather abstract “counter-term theorem” à la Herman, directly in the original elliptic variables without passing to action-angle ones. Our framework allows us to find “many more” almost periodic solutions with respect to the existing literature and consider also non-translation invariant PDEs.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.09.003","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920300871","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper we study the existence and linear stability of almost periodic solutions for a NLS equation on the circle with external parameters. Starting from the seminal result of Bourgain in [15] on the quintic NLS, we propose a novel approach allowing to prove in a unified framework the persistence of finite and infinite dimensional invariant tori, which are the support of the desired solutions. The persistence result is given through a rather abstract “counter-term theorem” à la Herman, directly in the original elliptic variables without passing to action-angle ones. Our framework allows us to find “many more” almost periodic solutions with respect to the existing literature and consider also non-translation invariant PDEs.

圆上NLS的几乎周期不变环面
本文研究了一类带外参数圆上NLS方程概周期解的存在性和线性稳定性。从Bourgain在[15]中关于五次NLS的开创性结果开始,我们提出了一种新的方法,允许在统一框架中证明有限维和无限维不变环面的持久性,这是期望解的支持。通过一个相当抽象的“逆项定理”,直接在原始椭圆变量中给出持久性结果,而不传递到作用角变量。我们的框架允许我们根据现有文献找到“更多”几乎周期性的解,并考虑非平移不变偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信