A Structural Errors-in-Variables Model with Heteroscedastic Measurement Errors under Heavy-Tailed Distributions

Chunzheng Cao, Xiao-Xin Zhu
{"title":"A Structural Errors-in-Variables Model with Heteroscedastic Measurement Errors under Heavy-Tailed Distributions","authors":"Chunzheng Cao, Xiao-Xin Zhu","doi":"10.1109/ICIC.2011.29","DOIUrl":null,"url":null,"abstract":"Errors-in-variables (measurement error) models are important issues in statistics and widely used in chemistry, physics, econometrics and medical sciences, etc. In this working paper, we discuss point estimation of the parameters in a structural errors-in-variables model with heteroscedastic measurement errors, when the observations jointly follow scale mixtures of normal distributions. The model with and without equation error are both included in our discussion. Compared with the method-of-moments estimators, maximum likelihood estimates are discussed through the EM iterative algorithms.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":"97 1","pages":"461-463"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Errors-in-variables (measurement error) models are important issues in statistics and widely used in chemistry, physics, econometrics and medical sciences, etc. In this working paper, we discuss point estimation of the parameters in a structural errors-in-variables model with heteroscedastic measurement errors, when the observations jointly follow scale mixtures of normal distributions. The model with and without equation error are both included in our discussion. Compared with the method-of-moments estimators, maximum likelihood estimates are discussed through the EM iterative algorithms.
重尾分布下具有异方差测量误差的结构变量误差模型
变量误差(测量误差)模型是统计学中的重要问题,广泛应用于化学、物理、计量经济学和医学等领域。在本文中,我们讨论了具有异方差测量误差的结构误差-变量模型中,当观测值共同服从正态分布的尺度混合分布时,参数的点估计。我们讨论了有方程误差和无方程误差的模型。与矩量估计法相比,通过EM迭代算法讨论了极大似然估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信