Trend-weighted rule-based expert system for process diagnosis

D. C. D. Souza, A. Neto, L. A. Guedes
{"title":"Trend-weighted rule-based expert system for process diagnosis","authors":"D. C. D. Souza, A. Neto, L. A. Guedes","doi":"10.1109/ETFA.2014.7005325","DOIUrl":null,"url":null,"abstract":"This paper presents and innovative technique-referred to as trend-weighted rule-based expert system (TWRBES) - grounded in the integration of two existing tools of the artificial intelligence field, expert systems (ES) and qualitative trend analysis (QTA). The main goal of this approach is to benefit of the main advantages associated with each of the techniques used, such as the ability to represent knowledge through rules and the ability to extract the behavior and the trends of a continuous signal. Such integration allows a direct purpose in industrial environment applications, especially in the intelligent automation field. This paper introduces this technique and preliminary results obtained from applying it to industrial process diagnosis.","PeriodicalId":20477,"journal":{"name":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2014.7005325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents and innovative technique-referred to as trend-weighted rule-based expert system (TWRBES) - grounded in the integration of two existing tools of the artificial intelligence field, expert systems (ES) and qualitative trend analysis (QTA). The main goal of this approach is to benefit of the main advantages associated with each of the techniques used, such as the ability to represent knowledge through rules and the ability to extract the behavior and the trends of a continuous signal. Such integration allows a direct purpose in industrial environment applications, especially in the intelligent automation field. This paper introduces this technique and preliminary results obtained from applying it to industrial process diagnosis.
基于趋势加权规则的过程诊断专家系统
本文提出了一种基于趋势加权规则的专家系统(TWRBES)的创新技术,该技术基于人工智能领域的两种现有工具,专家系统(ES)和定性趋势分析(QTA)的集成。这种方法的主要目标是利用与所使用的每种技术相关的主要优势,例如通过规则表示知识的能力,以及提取连续信号的行为和趋势的能力。这样的集成可以直接用于工业环境的应用,特别是在智能自动化领域。本文介绍了该技术及其在工业过程诊断中的初步应用效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信