{"title":"Pore structures and microstructures of silica gel monoliths at different stages of sintering","authors":"S. Mukherjee, J. Cordaro, J. C. Debsikdar","doi":"10.1111/J.1551-2916.1988.TB00257.X","DOIUrl":null,"url":null,"abstract":"The pore structures and microstructures of silica gel monoliths derived from the polycondensation of tetramethoxysilane (TMOS) in basic pH were characterized after various stages of sintering, using N{sub 2} gas adsorption-desorption, mercury porosimetry, and TEM. Gels dried by supercritical drying, i.e., aerogels and gels dried slowly in air have different pore structures and sinter with contrasting results when heat-treated under identical conditions. The air-dried gels do not sinter to full density and exhibit bloating on heating to high temperatures (1,100{degree}C), whereas under the same condition aerogels sinter to dense, transparent glass without bloating. Transmission electron microscopy shows that the microstructure of gels is composed of 5- to 10-nm primary spherical particles which clustered to form large (100 nm) spherical aggregates loosely bound to each other. In aerogels, two types of porosity exit: macroporosity and ultraporosity.","PeriodicalId":7260,"journal":{"name":"Advanced Ceramic Materials","volume":"8 1","pages":"463-467"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Ceramic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1551-2916.1988.TB00257.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The pore structures and microstructures of silica gel monoliths derived from the polycondensation of tetramethoxysilane (TMOS) in basic pH were characterized after various stages of sintering, using N{sub 2} gas adsorption-desorption, mercury porosimetry, and TEM. Gels dried by supercritical drying, i.e., aerogels and gels dried slowly in air have different pore structures and sinter with contrasting results when heat-treated under identical conditions. The air-dried gels do not sinter to full density and exhibit bloating on heating to high temperatures (1,100{degree}C), whereas under the same condition aerogels sinter to dense, transparent glass without bloating. Transmission electron microscopy shows that the microstructure of gels is composed of 5- to 10-nm primary spherical particles which clustered to form large (100 nm) spherical aggregates loosely bound to each other. In aerogels, two types of porosity exit: macroporosity and ultraporosity.