{"title":"Water level recognition based on strong edge and sparse constraints","authors":"Guoheng Ren, Wei Wang, Hanyu Wei, Xiaofeng Li","doi":"10.2166/ws.2023.221","DOIUrl":null,"url":null,"abstract":"\n \n This paper takes the intelligent water level recognition instrument of Qingming Shanghe Park in Kaifeng as the experimental object, introduces the algorithm of strong edge and sparse constraint into the intelligent water level recognition instrument, and compares the recognition effect of the intelligent water level recognition instrument before and after the introduction of strong edge and sparse constraint algorithms. The results showed that the clarity value was approximately 10% higher, and the recognition speed was also significantly improved. The improvement of recognition speed can effectively promote the work efficiency of the whole method. Strong edges and sparse constraints can effectively improve the accuracy of water level identification, provide scientific and effective data and information for subsequent water resource management, and meet the needs of water resource managers to effectively grasp the law of water level. This can provide technical support for identification methods in other fields, and the ultimate goal is to promote the protection and management of water resources and reduce the harm of natural disasters on people.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":"4 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
This paper takes the intelligent water level recognition instrument of Qingming Shanghe Park in Kaifeng as the experimental object, introduces the algorithm of strong edge and sparse constraint into the intelligent water level recognition instrument, and compares the recognition effect of the intelligent water level recognition instrument before and after the introduction of strong edge and sparse constraint algorithms. The results showed that the clarity value was approximately 10% higher, and the recognition speed was also significantly improved. The improvement of recognition speed can effectively promote the work efficiency of the whole method. Strong edges and sparse constraints can effectively improve the accuracy of water level identification, provide scientific and effective data and information for subsequent water resource management, and meet the needs of water resource managers to effectively grasp the law of water level. This can provide technical support for identification methods in other fields, and the ultimate goal is to promote the protection and management of water resources and reduce the harm of natural disasters on people.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.