Artem Badarin, V. Grubov, A. Andreev, V. Antipov, S. Kurkin
{"title":"Hemodynamic response in the motor cortex to execution of different types of movements","authors":"Artem Badarin, V. Grubov, A. Andreev, V. Antipov, S. Kurkin","doi":"10.18500/0869-6632-2022-30-1-96-108","DOIUrl":null,"url":null,"abstract":"Purpose of this work is the analysis of the hemodynamic response to the execution of various types of movements (single movement, series of movements, “tapping”) by the right hand. Methods. In this paper, the hemodynamic response was recorded using functional near infrared spectroscopy (NIRScout instrument from NIRx, Germany). The NIRScout system uses 16 optodes (8 sources and 8 detectors) to record the hemodynamic response in the cerebral cortex with a sampling rate of 7.8125 Hz. Optodes are non-invasively placed on the patient’s scalp by inserting into the sockets of a special cap “EASYCAP”. Results. We show that the total hemodynamic response in the motor cortex of the left hemisphere slightly differs between all the considered types of movement, while the severity of contralaterality demonstrates significant differences between the types of movements. Contralaterality is most pronounced when performing a series of movements, while a single squeeze of the hand causes the least contralaterality. Conclusion. The results obtained in this paper demonstrate the high sensitivity of functional near-infrared spectroscopy technology to the performance of various types of movements. It should be especially noted here short single hand squeezes, which are clearly visible on the characteristics of HbO and HbR, which can be used in the development and design of various brain – computer interfaces, including multimodal ones.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"10 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-1-96-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
Purpose of this work is the analysis of the hemodynamic response to the execution of various types of movements (single movement, series of movements, “tapping”) by the right hand. Methods. In this paper, the hemodynamic response was recorded using functional near infrared spectroscopy (NIRScout instrument from NIRx, Germany). The NIRScout system uses 16 optodes (8 sources and 8 detectors) to record the hemodynamic response in the cerebral cortex with a sampling rate of 7.8125 Hz. Optodes are non-invasively placed on the patient’s scalp by inserting into the sockets of a special cap “EASYCAP”. Results. We show that the total hemodynamic response in the motor cortex of the left hemisphere slightly differs between all the considered types of movement, while the severity of contralaterality demonstrates significant differences between the types of movements. Contralaterality is most pronounced when performing a series of movements, while a single squeeze of the hand causes the least contralaterality. Conclusion. The results obtained in this paper demonstrate the high sensitivity of functional near-infrared spectroscopy technology to the performance of various types of movements. It should be especially noted here short single hand squeezes, which are clearly visible on the characteristics of HbO and HbR, which can be used in the development and design of various brain – computer interfaces, including multimodal ones.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.