{"title":"3D integration for power-efficient computing","authors":"D. Dutoit, E. Guthmuller, I. Panades","doi":"10.7873/DATE.2013.166","DOIUrl":null,"url":null,"abstract":"3D stacking is currently seen as a breakthrough technology for improving bandwidth and energy efficiency in multi-core architectures. The expectation is to solve major issues such as external memory pressure and latency while maintaining reasonable power consumption. In this paper, we show some advances in this field of research, starting with memory interface solutions as WIDEIO experience on a real chip for solving DRAM accesses issue. We explain the integration of a 512-bit memory interface in a Network-on-Chip multi-core framework and we show the performance we can achieve, these results being based on a 65nm prototype integrating 10µm diameter Through Silicon Vias. We then present the potentiality of new fine grain 3D stacking technology for power-efficient memory hierarchy. We expose an innovative 3D stacked multi-cache strategy aimed at lowering memory latency and external memory bandwidth requirements and thus demonstrating the efficiency of 3D stacking to rethink architectures for obtaining unequalled performances in power efficiency.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"15 1","pages":"779-784"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
3D stacking is currently seen as a breakthrough technology for improving bandwidth and energy efficiency in multi-core architectures. The expectation is to solve major issues such as external memory pressure and latency while maintaining reasonable power consumption. In this paper, we show some advances in this field of research, starting with memory interface solutions as WIDEIO experience on a real chip for solving DRAM accesses issue. We explain the integration of a 512-bit memory interface in a Network-on-Chip multi-core framework and we show the performance we can achieve, these results being based on a 65nm prototype integrating 10µm diameter Through Silicon Vias. We then present the potentiality of new fine grain 3D stacking technology for power-efficient memory hierarchy. We expose an innovative 3D stacked multi-cache strategy aimed at lowering memory latency and external memory bandwidth requirements and thus demonstrating the efficiency of 3D stacking to rethink architectures for obtaining unequalled performances in power efficiency.