{"title":"Multi-scale flow regimes and driving forces analysis based on different models: a case study of the Wu river basin","authors":"Hongxiang Wang, Siyuan Cheng, N. He, Lintong Huang, Huan Yang, Fengtian Hong, Yinchu Ma, Wenxiong Chen, Wenxian Guo","doi":"10.2166/ws.2023.199","DOIUrl":null,"url":null,"abstract":"\n \n Quantitatively separating the influence of climate change and human activities on runoff is crucial to achieving sustainable water resource management in watersheds. This study presents a framework for quantitative assessment by integrating the indicators of hydrologic alteration, the whale optimization algorithm and random forest (WOA-RF), and the water erosion prediction (WEP-L) model. This framework aims to reconstruct natural runoff and quantify the differences in hydrological conditions and their driving forces at multi-timescales (annual, season, and month). The results indicate that the runoff of the Wu River has decreased since 2005, with a change degree of 46%. Climate factors were found to influence the interannual variation of runoff mainly. Meanwhile, human activities had a more significant impact in autumn, with a relative contribution rate of 59.0% (WOA-RF model) and 70.8% (WEP-L model). Monthly, the picture is more complex, with the results of the WOA-RF model indicating that climate change has a significant impact in July, August, and September (88.8, 92.7, and 79.3%, respectively). However, the WEP-L model results showed that the relative contribution of land use was significant in April, May, June, October, and November (51.24, 64.23, 63.63, 53.16, and 50.63%, respectively). The results of the study can be helpful for regional water allocation.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":"15 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
Quantitatively separating the influence of climate change and human activities on runoff is crucial to achieving sustainable water resource management in watersheds. This study presents a framework for quantitative assessment by integrating the indicators of hydrologic alteration, the whale optimization algorithm and random forest (WOA-RF), and the water erosion prediction (WEP-L) model. This framework aims to reconstruct natural runoff and quantify the differences in hydrological conditions and their driving forces at multi-timescales (annual, season, and month). The results indicate that the runoff of the Wu River has decreased since 2005, with a change degree of 46%. Climate factors were found to influence the interannual variation of runoff mainly. Meanwhile, human activities had a more significant impact in autumn, with a relative contribution rate of 59.0% (WOA-RF model) and 70.8% (WEP-L model). Monthly, the picture is more complex, with the results of the WOA-RF model indicating that climate change has a significant impact in July, August, and September (88.8, 92.7, and 79.3%, respectively). However, the WEP-L model results showed that the relative contribution of land use was significant in April, May, June, October, and November (51.24, 64.23, 63.63, 53.16, and 50.63%, respectively). The results of the study can be helpful for regional water allocation.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.