Toughness and binding number bounds of star-like and path factor

Xin Feng, Xingchao Deng
{"title":"Toughness and binding number bounds of star-like and path factor","authors":"Xin Feng, Xingchao Deng","doi":"10.1051/ro/2023057","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{L}$ be a set which consists of some connected graphs. Let $E$ be a spanning subgraph of graph $G$. It is called a $\\mathcal{L}$-factor if every component of it is isomorphic to the element in $\\mathcal{L}$. In this contribution, we give the lower bounds of four parameters ($t(G),$ $I(G), $ $I'(G),$ $\\operatorname{bind}(G)$) of $G$, which force the graph $G$ admits a $(\\{K_{1,i}:q\\leq i\\leq 2q-1\\}\\cup \\{K_{2q+1}\\})$-factor for $q\\geq 2$ and a $\\{P_2, P_{2q+1}\\}$-factor for $q\\geq 3$ respectively. The tightness of the bounds are given.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{L}$ be a set which consists of some connected graphs. Let $E$ be a spanning subgraph of graph $G$. It is called a $\mathcal{L}$-factor if every component of it is isomorphic to the element in $\mathcal{L}$. In this contribution, we give the lower bounds of four parameters ($t(G),$ $I(G), $ $I'(G),$ $\operatorname{bind}(G)$) of $G$, which force the graph $G$ admits a $(\{K_{1,i}:q\leq i\leq 2q-1\}\cup \{K_{2q+1}\})$-factor for $q\geq 2$ and a $\{P_2, P_{2q+1}\}$-factor for $q\geq 3$ respectively. The tightness of the bounds are given.
星状因子和路径因子的韧性和结合数界限
设$\mathcal{L}$是一个由若干连通图组成的集合。设$E$为图$G$的生成子图。如果它的每个组成部分都与$\mathcal{L}$中的元素同构,则称为$\mathcal{L}$ -因子。在本文中,我们给出了$G$的四个参数($t(G),$$I(G), $$I'(G),$$\operatorname{bind}(G)$)的下界,这使得图$G$分别对$q\geq 2$和$q\geq 3$承认一个$(\{K_{1,i}:q\leq i\leq 2q-1\}\cup \{K_{2q+1}\})$因子和一个$\{P_2, P_{2q+1}\}$因子。给出了边界的紧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信