Evaluating the Potential of Polylactide Nonwovens as Bio-Based Media for Air Filtration

C. Schippers, Elena Marx, Ralf Taubner, J. Gutmann, L. Tsarkova
{"title":"Evaluating the Potential of Polylactide Nonwovens as Bio-Based Media for Air Filtration","authors":"C. Schippers, Elena Marx, Ralf Taubner, J. Gutmann, L. Tsarkova","doi":"10.3390/textiles1020014","DOIUrl":null,"url":null,"abstract":"The presented research aims to characterize hydrolytic resistance of highly crystalline and oriented polylactide (PLA) as a prerequisite for exploiting this bio-based material in durable applications. Industrially melt-spun PLA monofilaments and nonwovens have been subjected to environmental aging in a temperature range of 50–70 °C at a wide range of relative humidity (RH) in order to identify the onset of the material degradation under application conditions. Along with the measurements of mechanical and thermal behavior of the aged samples, the suitability of FTIR spectroscopy to probe the initial changes in the crystalline structure and in chemical composition of the fibers, caused by hydrolytic degradation, has been evaluated. The diagrams of stability and hydrolytic degradation under employed environmental aging for 7–14 days are presented for both types of PLA materials. Assessment of filtration performance of the artificially aged fibrous PLA media indicated a good agreement with the established stability diagram and confirmed the application potential of PLA nonwoven media, spun from currently available PLA grades, in air filtration under moderate climatic conditions up to max 50 °C and 50% RH. The presented results advance the knowledge on hydrolytic resistance of bio-based industry-relevant fibers and therefore open new application areas for sustainable materials with biodegradable components.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textiles (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/textiles1020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presented research aims to characterize hydrolytic resistance of highly crystalline and oriented polylactide (PLA) as a prerequisite for exploiting this bio-based material in durable applications. Industrially melt-spun PLA monofilaments and nonwovens have been subjected to environmental aging in a temperature range of 50–70 °C at a wide range of relative humidity (RH) in order to identify the onset of the material degradation under application conditions. Along with the measurements of mechanical and thermal behavior of the aged samples, the suitability of FTIR spectroscopy to probe the initial changes in the crystalline structure and in chemical composition of the fibers, caused by hydrolytic degradation, has been evaluated. The diagrams of stability and hydrolytic degradation under employed environmental aging for 7–14 days are presented for both types of PLA materials. Assessment of filtration performance of the artificially aged fibrous PLA media indicated a good agreement with the established stability diagram and confirmed the application potential of PLA nonwoven media, spun from currently available PLA grades, in air filtration under moderate climatic conditions up to max 50 °C and 50% RH. The presented results advance the knowledge on hydrolytic resistance of bio-based industry-relevant fibers and therefore open new application areas for sustainable materials with biodegradable components.
评价聚乳酸非织造布作为生物基空气过滤介质的潜力
本研究的目的是表征高结晶和取向聚乳酸(PLA)的耐水解性,这是开发这种生物基材料在耐用应用中的先决条件。工业熔融纺PLA单丝和非织造布在50-70°C的温度范围内,在广泛的相对湿度(RH)下进行环境老化,以确定材料在应用条件下降解的开始。随着老化样品的力学和热行为的测量,FTIR光谱探测纤维的晶体结构和化学成分的初始变化,由水解降解引起的适用性进行了评估。给出了两种PLA材料在7-14天环境老化下的稳定性和水解降解图。人工老化纤维PLA介质的过滤性能评估表明,与建立的稳定性图有很好的一致性,并证实了PLA非织造介质在中等气候条件下(最高50°C和50% RH)在空气过滤中的应用潜力。本研究结果促进了对生物基工业相关纤维抗水解性的认识,从而为生物可降解组分可持续材料开辟了新的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信