A Data Mining Technique for Real Time Process Monitoring with Mass Spectrometry : APC: Advanced Process Control

So-Hui Park, Sungbin Lee, Eunsun Hong, B. Kim, Jihye Yi, Gyeom-Heon Kim, Jinho Kim, Jungdae Park
{"title":"A Data Mining Technique for Real Time Process Monitoring with Mass Spectrometry : APC: Advanced Process Control","authors":"So-Hui Park, Sungbin Lee, Eunsun Hong, B. Kim, Jihye Yi, Gyeom-Heon Kim, Jinho Kim, Jungdae Park","doi":"10.1109/ASMC49169.2020.9185331","DOIUrl":null,"url":null,"abstract":"As the semiconductor process becomes more complicated, process monitoring that reflects real time process conditions is important. The mass spectrometer is an effective tool to represent the process by monitoring process chemical reaction in real time. In order to apply the mass spectrometer data as the process-related data, it is necessary to use the data mining technique to process the large amount of collected data. In this study, we find out the correlation between the mass spectrometer data collected in real time and the process data describing the device performance with the data mining technique. We developed an automatic data analysis model to reduce the repetitive work of the analysts and improve the analysis efficiency about a large amount of the mass spectrometer data. We will contribute making a fault detection & classification system for fine control process by using advanced data analysis technology.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"8 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the semiconductor process becomes more complicated, process monitoring that reflects real time process conditions is important. The mass spectrometer is an effective tool to represent the process by monitoring process chemical reaction in real time. In order to apply the mass spectrometer data as the process-related data, it is necessary to use the data mining technique to process the large amount of collected data. In this study, we find out the correlation between the mass spectrometer data collected in real time and the process data describing the device performance with the data mining technique. We developed an automatic data analysis model to reduce the repetitive work of the analysts and improve the analysis efficiency about a large amount of the mass spectrometer data. We will contribute making a fault detection & classification system for fine control process by using advanced data analysis technology.
用于质谱实时过程监测的数据挖掘技术:APC:高级过程控制
随着半导体工艺越来越复杂,反映实时工艺条件的工艺监控变得非常重要。质谱计是实时监测过程化学反应的有效工具。为了将质谱仪数据作为过程相关数据加以应用,需要使用数据挖掘技术对大量采集的数据进行处理。在本研究中,我们利用数据挖掘技术找出实时采集的质谱仪数据与描述设备性能的过程数据之间的相关性。为了减少分析人员的重复性工作,提高大量质谱仪数据的分析效率,我们开发了一种自动数据分析模型。我们将利用先进的数据分析技术,为精细控制过程的故障检测和分类系统做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信