Metric embedding via shortest path decompositions

Ittai Abraham, Arnold Filtser, Anupam Gupta, Ofer Neiman
{"title":"Metric embedding via shortest path decompositions","authors":"Ittai Abraham, Arnold Filtser, Anupam Gupta, Ofer Neiman","doi":"10.1145/3188745.3188808","DOIUrl":null,"url":null,"abstract":"We study the problem of embedding weighted graphs of pathwidth k into ℓp spaces. Our main result is an O(kmin{1p,12})-distortion embedding. For p=1, this is a super-exponential improvement over the best previous bound of Lee and Sidiropoulos. Our distortion bound is asymptotically tight for any fixed p >1. Our result is obtained via a novel embedding technique that is based on low depth decompositions of a graph via shortest paths. The core new idea is that given a geodesic shortest path P, we can probabilistically embed all points into 2 dimensions with respect to P. For p>2 our embedding also implies improved distortion on bounded treewidth graphs (O((klogn)1p)). For asymptotically large p, our results also implies improved distortion on graphs excluding a minor.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We study the problem of embedding weighted graphs of pathwidth k into ℓp spaces. Our main result is an O(kmin{1p,12})-distortion embedding. For p=1, this is a super-exponential improvement over the best previous bound of Lee and Sidiropoulos. Our distortion bound is asymptotically tight for any fixed p >1. Our result is obtained via a novel embedding technique that is based on low depth decompositions of a graph via shortest paths. The core new idea is that given a geodesic shortest path P, we can probabilistically embed all points into 2 dimensions with respect to P. For p>2 our embedding also implies improved distortion on bounded treewidth graphs (O((klogn)1p)). For asymptotically large p, our results also implies improved distortion on graphs excluding a minor.
基于最短路径分解的度量嵌入
研究了将路径宽度为k的加权图嵌入到p空间中的问题。我们的主要结果是一个0 (kmin{1p,12})失真嵌入。对于p=1,这是对Lee和Sidiropoulos的最佳上界的一个超指数改进。对于任意固定的p >1,我们的畸变界是渐近紧的。我们的结果是通过一种新的嵌入技术获得的,该技术基于通过最短路径对图进行低深度分解。核心的新思想是,给定一个测地线最短路径P,我们可以概率地将所有点嵌入到关于P的二维空间中。对于P >2,我们的嵌入也意味着改善了有界树宽图(O((klogn)1p))的失真。对于渐近较大的p,我们的结果还暗示了在不包含一个次要项的图上改进的畸变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信