Reconstruction of gene regulatory networks by stepwise multiple linear regression from time-series microarray data

Yiqian Zhou, Jacqueline Gerhart, A. Sacan
{"title":"Reconstruction of gene regulatory networks by stepwise multiple linear regression from time-series microarray data","authors":"Yiqian Zhou, Jacqueline Gerhart, A. Sacan","doi":"10.1109/BIBMW.2011.6112544","DOIUrl":null,"url":null,"abstract":"Gene regulatory networks provide a powerful abstraction of the complex interactions among genes involved in functional pathways. Experimental determination of these interactions using a classical experimental method, although of extreme value, is laborious and prohibitive at large scales. Over the last decade, a number of computational approaches have been developed to infer gene regulatory networks from high-throughput experimental data. In this study, we introduce a new algorithm for regulatory network inference, based on stepwise multiple regression of time-series microarray data. Compared to other existing methods, our regression-based method provides a clear interpretation of the inferred interactions. The statistical significance associated with each prediction can be utilized to rank the interactions, which is important in prioritization of predictions for further experimental verification. We demonstrate the performance of our approach on a well-known yeast cell cycle pathway and show that it makes more accurate predictions than existing methods.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"35 1","pages":"1017-1019"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gene regulatory networks provide a powerful abstraction of the complex interactions among genes involved in functional pathways. Experimental determination of these interactions using a classical experimental method, although of extreme value, is laborious and prohibitive at large scales. Over the last decade, a number of computational approaches have been developed to infer gene regulatory networks from high-throughput experimental data. In this study, we introduce a new algorithm for regulatory network inference, based on stepwise multiple regression of time-series microarray data. Compared to other existing methods, our regression-based method provides a clear interpretation of the inferred interactions. The statistical significance associated with each prediction can be utilized to rank the interactions, which is important in prioritization of predictions for further experimental verification. We demonstrate the performance of our approach on a well-known yeast cell cycle pathway and show that it makes more accurate predictions than existing methods.
基于时间序列微阵列数据的逐步多元线性回归基因调控网络重构
基因调控网络为参与功能通路的基因之间复杂的相互作用提供了一个强有力的抽象。使用经典实验方法对这些相互作用进行实验测定,虽然具有极高的价值,但在大尺度上是费力和令人望而却步的。在过去的十年中,已经开发了许多计算方法来从高通量实验数据中推断基因调控网络。在这项研究中,我们引入了一种新的基于时序微阵列数据逐步多元回归的调节网络推理算法。与其他现有方法相比,我们基于回归的方法对推断的相互作用提供了清晰的解释。与每个预测相关的统计显著性可以用来对相互作用进行排序,这对于进一步实验验证预测的优先级很重要。我们证明了我们的方法在一个众所周知的酵母细胞周期途径上的表现,并表明它比现有的方法做出更准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信