{"title":"Post-Wildfire Debris Flows in Montecito, California (USA): A Case Study and Empirically Based Debris Volume Estimation","authors":"Diwakar KC, Liangbo Hu","doi":"10.3390/geotechnics3020020","DOIUrl":null,"url":null,"abstract":"Wildfires have a strong influence on various geotechnical and hydraulic properties of soils and sediments, which may become more vulnerable to landslides or debris flows. In the present study, a case investigation of the 2018 post-wildfire debris flows in Montecito, California, USA, was conducted, with a focus on the wildfire-affected areas and debris volume estimation. Significant debris were deposited around four major creeks, i.e., Montecito Creek, San Ysidro Creek, Buena Vista Creek, and Romero Creek in January, 2018, one month after the Thomas fire. Satellite images utilizing remote sensing techniques and geographic information system (GIS) data were analyzed to identify areas affected by the wildfire. Relevant data, including the slope, catchment area, and rainfall were used in two empirical models to estimate the debris volumes around the four creeks. As compared with field observation, each debris volume estimated with these empirical models was within the same order of magnitude. The debris volumes were generally underestimated when using the rainfall recorded at the Montecito Weather Station; the estimates considerably improved with the rainfall record from the Doulton Tunnel Station. The results showed that, overall, such empirical approaches are still of benefit for engineering practice, as they are capable of offering first-order approximations. The accuracy and availability of rainfall data are critical factors; the rainfall data in mountainous areas are generally higher than in the low lands, and consequently were more suitable for debris volume estimation in the present study, where the debris flows typically occurred in areas with steep slopes and at higher elevations.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"79 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wildfires have a strong influence on various geotechnical and hydraulic properties of soils and sediments, which may become more vulnerable to landslides or debris flows. In the present study, a case investigation of the 2018 post-wildfire debris flows in Montecito, California, USA, was conducted, with a focus on the wildfire-affected areas and debris volume estimation. Significant debris were deposited around four major creeks, i.e., Montecito Creek, San Ysidro Creek, Buena Vista Creek, and Romero Creek in January, 2018, one month after the Thomas fire. Satellite images utilizing remote sensing techniques and geographic information system (GIS) data were analyzed to identify areas affected by the wildfire. Relevant data, including the slope, catchment area, and rainfall were used in two empirical models to estimate the debris volumes around the four creeks. As compared with field observation, each debris volume estimated with these empirical models was within the same order of magnitude. The debris volumes were generally underestimated when using the rainfall recorded at the Montecito Weather Station; the estimates considerably improved with the rainfall record from the Doulton Tunnel Station. The results showed that, overall, such empirical approaches are still of benefit for engineering practice, as they are capable of offering first-order approximations. The accuracy and availability of rainfall data are critical factors; the rainfall data in mountainous areas are generally higher than in the low lands, and consequently were more suitable for debris volume estimation in the present study, where the debris flows typically occurred in areas with steep slopes and at higher elevations.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.