The use of convolutional neural networks for processing images from multiple IACTs in the TAIGA experiment

S. Polyakov, A. Demichev, A. Kryukov, E. Postnikov
{"title":"The use of convolutional neural networks for processing images from multiple IACTs in the TAIGA experiment","authors":"S. Polyakov, A. Demichev, A. Kryukov, E. Postnikov","doi":"10.22323/1.395.0753","DOIUrl":null,"url":null,"abstract":"TAIGAexperiment uses hybrid detection system for cosmic and gamma rays that currently includes three imaging atmospheric Cherenkov telescopes (IACTs). Previously we used convolutional neural networks to identify gamma ray events and estimate the energy of the gamma rays based on an image from a single telescope. Subsequently we adapted these techniques to use data from multiple telescopes, increasing the quality of selection and the accuracy of estimates. All the results have been obtained with the simulated data of TAIGA Monte Carlo software.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.395.0753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

TAIGAexperiment uses hybrid detection system for cosmic and gamma rays that currently includes three imaging atmospheric Cherenkov telescopes (IACTs). Previously we used convolutional neural networks to identify gamma ray events and estimate the energy of the gamma rays based on an image from a single telescope. Subsequently we adapted these techniques to use data from multiple telescopes, increasing the quality of selection and the accuracy of estimates. All the results have been obtained with the simulated data of TAIGA Monte Carlo software.
在TAIGA实验中使用卷积神经网络处理来自多个IACTs的图像
taiga实验使用宇宙射线和伽马射线的混合探测系统,目前包括三个成像大气切伦科夫望远镜(IACTs)。以前,我们使用卷积神经网络来识别伽马射线事件,并根据单个望远镜的图像估计伽马射线的能量。随后,我们调整了这些技术来使用来自多个望远镜的数据,提高了选择的质量和估计的准确性。利用TAIGA蒙特卡罗软件的模拟数据,得到了上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信